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ABSTRACT 
Summary: As part of The Cancer Genome Atlas (TCGA), the Broad 
Institute Genome Characterization Center has generated copy-
number profiles using single nucleotide polymorphism (SNP) array 
data from over 10,000 pairs of cancer and matched normal DNA 
samples. We describe the copy-number inference pipeline, which 
begins with raw probe-level intensity data and concludes with the 
identification of genes potentially targeted by somatic copy-number 
alterations (SCNAs).   
Availability: The pipeline is available as a GenePattern pipeline at 
www.broadinstitute.org/cancer/cga/copynumber_pipeline. 
Contact: matthew_meyerson@dfci.harvard.edu,  
rameen@broadinstitute.org, gadgetz@broadinstitute.org 
 
Supplementary information: Supplementary methods, code, and 
data are available at Bioinformatics online 

1 INTRODUCTION  
High-resolution microarrays enable fine-scale characterization of 
somatic copy-number alterations (SCNAs) in cancer genomes and 
facilitate the discovery of genes that drive cancer (Garraway et al., 
2005; Weir et al., 2007; TGCA Network, 2008; Beroukhim et al., 
2010; Northcott et al., 2012; Zack et al., 2013). We developed a 
pipeline to process such data with special attention to noise reduc-
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**To whom correspondence should be addressed. 

tion, artifact removal, and quality control. Our pipeline is for use 
with Affymetrix SNP 6.0 arrays, containing for 906,600 “SNP 
markers” associated with single nucleotide polymorphisms and 
946,000 “copy number markers” at other locations 
(www.affymetrix.com/support/technical/technotes/cn_snp_variatio
n_technote.pdf), and has been the basis for analyses of all such 
data for The Cancer Genome Atlas (TCGA). However, the under-
lying techniques can be extended to other platforms. 
 
We describe this pipeline here, including two techniques that have 
not been previously described: copy-number inference to calibrate 
copy-number probes, and tangent normalization to reduce 
systematic noise. The methods we describe are instantiated in the 
GenePattern pipeline CopyNumberInferencePipeline. 

2 ALGORITHM 
Our pipeline includes six primary modules (Figure 1) to: 

(1) Normalize and combine probe intensities to produce a single 
intensity per probeset.  

(2) Calibrate probesets to associate copy-numbers to each genomic 
locus. 

(3) Reduce biological noise from germline copy-number variations 
(CNVs). 

(4) Reduce systematic experimental noise. 
(5) Reduce random experimental noise through segmentation.  
(6) Identify genes that are amplified or deleted more than expected by 

chance using GISTIC2.0 (Mermel et al., 2011). 
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The TCGA .CEL files, inputs to our pipeline, are available at the TCGA 
Data Portal (tcga-nci.nih.gov/tcga) as Level 1 Data. Output files of modules 
(1) – (4) are available as Level 2 Data; normalized, segmented data 
(outputs of module (5)) are uploaded as Level 3 Data (see Supplementary 
Figure 1 and Supplementary Methods). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Flow diagram indicating key modules of the Tangent copy-
number inference pipeline with compute time and memory requirements for 
each for processing a 96 sample batch (platform: Linux RedHat 5.5 64bit, 
12 cores with AMD Opteron 6180 SE 2.5Ghz, 32GB RAM).  

2.1 Normalizing and combining intensities over 
probesets  

Each genomic locus and SNP allele is represented by multiple probes on 
the array (a “probeset”).  Probe-level intensities are represented in .CEL 
files generated by Affymetrix GeneChip Command Console. 
SNPFileCreator, a Java implementation of the dChip signal intensity 
determination algorithm (Li and Wong, 2001b; 2001a), is used to normalize 
and merge intensity values for each probeset. Probe intensities across a 
sample are first scaled to achieve a median brightness value of 1000 and 
then are subjected to quantile normalization. The normalized probe 
intensities of each sample are mapped to a reference sample using model-
based expression indices (MBEI). Median polish is then applied to each 
probeset across samples to produce one value per probeset for each sample. 
SNP array data are typically generated in batches (defined by joint PCR 
amplification step); we apply SNPFileCreator to all arrays in each batch. 

2.2 Calibration and Copy Number Inference 
Probeset intensities are mapped to copy-number levels (“calibrated”) on a 
batch-by-batch basis, assuming a linear relationship between signal 
intensity and copy-number. Calibration of a probeset is determined by two 
parameters: the background signal intensity and a scale factor that specifies 
the change in intensity resulting from each added copy of DNA.  
 
For SNP loci, Birdseed (Korn et al., 2008) is used to calibrate probesets for 
each allele, using intensity data collected from normal samples, allele-
specific background, and scale parameters. The resulting copy-numbers for 
the two alleles are summed to obtain total copy-number estimates. 

Calibration of copy-number markers relies on SNP array data we have 
generated from 5 cell lines with known variation of copy-number of the X-
chromosome from 1 to 5. We applied linear regression to these data to 
determine the background and scale factor for each probeset on X, and 
modeled these parameters as a function of local sequence features and 
median intensity across samples (see Supplementary Methods). This model 
enables calibration of all probesets across the genome. 

2.3 Reduction of Biological Noise 
A major source of “noise” in somatic copy-number profiles is germline 
copy-number variations (CNVs) misidentified as SCNAs. We address this 
issue by removing probesets overlapping CNVs. We identify CNVs as 
genomic regions that display extensive variation across normal samples. In 
some cases, these may reflect noisy probes rather than true CNVs.  

2.4 Reduction of Systematic Experimental Noise 
We have found systematic variations in signal intensities across the genome 
between analyses of the same DNA using different arrays, both within and 
across batches (Supplementary Figure S2). These may reflect variations in 
experimental conditions between different arrays and can lead to the false 
appearance of SCNAs that recur across samples.  
 
Tangent normalization assumes that noise (in log-transformation units) in 
SNP array data is distributed according to a similar pattern in cancer 
samples to normal samples. Therefore, to minimize noise, we subtract 
estimated noise profiles individually calculated for each tumor using data 
from all normal samples. Specifically, we determine the weighted sum of 
noise profiles from all normal samples that most closely matches each 
tumor’s profile, and subtract it from that tumor. These weighted sums of 
normal profiles lie within a subspace (the “tangent plane”) of the space 
containing all possible copy-number profiles; the weighted sum used for 
each tumor is that tumor’s projection into this subspace. (See 
Supplementary Methods for details and results with TCGA data.) 

2.5 Segmentation and GISTIC2.0 
Random noise is removed by Circular Binary Segmentation (Venkatraman 
and Olshen, 2007). GISTIC2.0 is then applied to determine significantly 
amplified or deleted SCNAs. 

2.6 Quality Control 
Automated quality control is integrated into various stages of the pipeline. 
Assessment of the DNA quality of normal samples improves the accuracy 
of our calibration of SNP probesets. A ‘tumor-detector’ ensures that tumors 
mislabeled as normals and contaminated normal samples do not 
compromise CNV detection or the tangent noise model. Noise assessments 
before and after segmentation gate the quality of samples that are input into 
GISTIC2.0. (See Supplementary Methods for details.) 
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