
Supplementary Methods 
 
Calibration of the CN Markers 
 
Our calibration of the CN markers relies on a two-step modeling approach (“copy-
number inference”) based on SNP6.0 array data of an X-dosage experiment 
performed on 46 samples from 5 cell lines with known variation of copy number of 
the X-chromosome from 1 to 5.   We first calibrate each probeset on X by applying 
linear regression to the experimental data to fit the parameters βi0 and βi1 of the 
model 
 

(i)    Ii  = βi0 + βi1 Ci. 

 

Here variable Ii  represents the intensity of probeset i, variable Ci represents the 
copy level at probeset i, and parameters βi0 and βi1 correspond respectively to the 
background signal intensity and the scale factor that specifies the change in 
intensity resulting from each added copy of DNA.  
 
We extend the resulting calibration of the X probesets to a calibration for all 
probesets across the genome by modeling the background signal intensity and the 
scale factor as functions of local sequence features and median intensity across 
samples as follows: 
 

(ii) βik = k0 + k1GCi +k2FL(sty)i + k3FL(nsp)i + k4Iim + k5(Iim)2 

 
for k  0,1.  The variable GCi represents the GC content of the ith probeset, FL(sty)i 

and FL(nsp)i represent the fragment lengths of the STY and NSP fragments of the ith 
probeset respectively, and Iim represents the probeset median intensity across the 
samples. The linear dependence on GC content and fragment lengths and quadratic 
dependence on median intensity provides a good fit to our X-dosage array data.  We 
apply linear regression again, this time to find the parameters, kl for k  0,1 and l 
 0,1,2,3,4,5 that best fit model (ii).   The parameters kl are independent of the 
probeset and, for k = 1 or 2, this regression is performed collectively on the 

complete set of X-chromosome data, {βik, GCi , FL(sty)i , FL(nsp)i, Iim}i   X where IX is 

the collection of indices for the X probesets.  Each of the parameters for both models 
(i) and (ii) described above is computed once based on the results of the X-dosage 
experiment.  Model (ii) is then used to predict the background and scale factor 
across the genome for each new batch of SNP6.0 array data.  While GC content and 
fragment lengths do not vary with the batch, the median intensity must be 
computed separately for each batch. 
The code and data used generate the model parameters are available in the 
supplementary file generate_snp6_cn_probe_calibration.tar.gz. 
 
 
Quality Control 



 
A key feature of our pipeline is automated quality control, which is integrated into 
the pipeline at various stages.  Level 1 Quality Control (QC) is an assessment of the 
DNA quality of normal samples and is used to improve the accuracy of our 
calibration of SNP probesets.  Normal samples must also pass additional quality 
control to be included in the CNV-detection analysis and the tangent noise model.  
This ensures that tumors mislabeled as normals and contaminated normal samples 
do not compromise our noise reduction algorithms. Level 2 and Level 3 QC provide 
noise assessments of copy number calls before and after segmentation respectively.  
Data from tumor samples that do not pass Levels 2 and 3 QC will not be input into 
GISTIC2.0.  
 
Thresholds for Level 1 QC are based on recommendations from Affymetrix.  
Thresholds for all other QC measures were determined empirically based on the 
corresponding distributions for thousands of samples. 
 
Level 1 QC: Level 1 QC consists of two components, the FQC all-call-rate and the 
Birdseed call-rate. 
 
The FQC all-call-rate, which is computed using Affymetrix Power Tools software, is 
based on the intensities resulting from a small number of probesets whose 
configurations follow that of the Affymetrix 500K platform.  While most probesets 
on the SNP6.0 platform consist of 3 identical probes for each allele with the SNP 
centered within each probe, these select probesets have approximately 10 probes 
per allele and position the SNP at a different location within each probe.  The FQC-
all-call-rate is a measure of self-consistency for these probesets and must exceed the 
threshold of 86 for a sample to pass. 
 
The Birdseed call-rate is an assessment of Birdseed genotype calls for a normal 
sample.  For each SNP probeset, genotyping is based on cluster assignments for the 
collection of normal samples from the same batch along with a set of historical prior 
arrays.  If the intensities for the two alleles lie too far from the clusters determined 
by the other arrays, then no call will be made for the genotype.  A call must be made 
for at least 95% of the SNP probesets in order for a sample to pass Level 1 QC. 
 
Tumor Detector: Both our CNV-detection algorithm and our tangent noise model 
depend on the assumption that normal samples do not contain SCNAs.  In order to 
weed out samples that bear evidence of SCNAs, we compute a disruption score for 
each normal sample, defined as the mean absolute moving average of log2 copy 
ratios across the genome. Samples whose disruption scores fall within the tail of the 
distribution are excluded from the noise model, N, constructed during tangent 

normalization.  The quantity of available data allows us to set the threshold at a 
conservative level, 0.073. 
 



Level 2 QC: Level 2 QC is a noise assessment for each sample prior to segmentation.  
The acceptable noise level, measured as the genomic median of the absolute 
difference of log2 copy ratios for adjacent probes, is capped at 0.60. 
 
Level 3 QC: Noisy samples at Level 2 can result in hypersegmentation at Level 3, with 
large numbers of adjacent segments whose copy-ratios differ by less than would be 
expected from absolute copy-number changes of one or more. Currently, samples 
with a segment count exceeding 2000 fail Level 3 QC.  This threshold may be 
lowered as improvements to our pipeline upstream of segmentation have resulted 
in lower segment counts overall 
 
GenePattern Module: CopyNumberInferencePipeline 
 
The pipeline described here is available through the GenePattern module, 
CopyNumberInferencePipeline, at genepattern.broadinstitute.org/gp. The pipeline 
accepts a set of raw tumor and normal Affymetrix SNP6.0 CEL files along with a 
sample info file (SIF) as inputs and generates segmented copy-number calls for each 
sample using either the human reference genome HG18 or HG19, at the user’s 
choosing.  The user may also opt to have copy-number calls for the CNV probes 
included in the output, although these probes will be excluded from tangent 
normalization.  Segmented copy-number calls are specified as log2 copy-number 
ratios, and normalized so that each sample appears diploid. 
 
Supplementary Figure S1 displays the flow of data through the pipeline and 
indicates the key output files of the pipeline modules.  The contents of the required 
input files and key output files are summarized below.   
 
Further documentation is available at 
broadinstitute.org/cancer/cga/copynumber_pipeline . 
 
Required inputs 
 
For the best calibration results, CEL files submitted together should be associated to 
chips that were processed within the same PCR batch and include 20 or more 
diploid normals.  A minimum of 10 normals is required. Normals need not be 
matched pairs for the tumor samples.  Tissue-adjacent normals and cell lines may 
lead to misleading results.  Including more normal samples within the batch will 
improve the noise reduction during tangent normalization. 
 
The SIF is a tab-delimited table with the following per-sample information: 

 
Array: CEL file name, but without the .CEL extension. 
Gender: M, F, or NoCall. 
Tumor/Normal: Tumor or Normal. 
Birdseed_normals: <blank> or Y.  Y is for indicating that the given normal is 
believed to be diploid and the array measurments have low noise. 

http://www.broadinstitute.org/cancer/cga/copynumber_pipeline


Matched_Normal_Array: not currently used. 
 
Output Files 
 
SNPFileCreator: 
 

*.med1000.invset_medpolish.snp: (TCGA Level 2) One value is output per 
probe. Values are centered on 1000 for each sample, and are in linear space. 

 
Calibration: 
 

*.birdseedCalls.txt: (TCGA Level 2) The genotype per SNP probe: 0=AA, 1=AB, 
2=BB, where A is the major allele.  
 
*.birdseedConfs.txt:  (TCGA Level 2) Confidence of call for each SNP probe.  
 
*.med1000.invset_medpolish.pip3avg.log_mdQUAD.byallele.txt:  (TCGA Level 
2) One line is output per SNP probeset, and each line has the copy-number 
calls for the A and B SNP probesets at that location. The values are in linear 
space, and are approximately diploid.  A fixed set of poorly performing SNP 
probesets have been dropped. 
 
*.med100.invset_medpolish.pip3avg.log_mdQUAD.txt:  (TCGA Level 2) One 
line is output per SNP or CN probeset.  The values are in linear space, and are 
approximately diploid.  For SNP probesets, the values for the two alleles are 
summed to represent total copy number. A fixed set of poorly performing 
SNP and CN probesets have been dropped. 
 

Tangent normalization: 
 

*_posttangent_woCNV.txt:  (TCGA Level 2) One line is output per SNP or CN 
probeset.  The values are in linear space, and are centered on diploid.  CNV 
probes and the Y chromosome are excluded. A fixed set of poorly performing 
SNP and CN probesets have been dropped, and probes identified as outliers 
in the given sample have been set to NaN.   These outputs are mapped to the 
HG19 reference genome. 
 
*_posttangent_wCNV.txt: (TCGA Level 2) Similar to *_posttangent_woCNV.txt, 
but includes (unnormalized) values for CNV probes and Y. 
 
*.early_gistic_prep_output._suspect_normals.txt: List of submitted normal 
arrays excluded from the reference plane during tangent normalization due 
to failure to pass Tumor Detector QC.  (See Quality Control above.) 

 
Circular Binary segmentation: 
 



*_woCNV_hg18.seg,  *_woCNV.hg19.seg,  *_wCNV_hg18.seg, 
*_wCNV_hg19.seg: (TCGA Level 3) One line per segment.  The values are in 
log space, centered on 0. 
 

   
Tangent Normalization Overview 
 
The calibrated copy number exhibits systematic variation related to the genomic 
location, the sample, and the batch.  This is most easily observed by comparing 
diploid regions of various normal samples (i.e. outside of CNV regions), or by 
comparing replicates of one sample (Supplementary Figure S2).  Similar variation is 
also observed in tumor samples.  This systematic variation can be mistaken for 
many recurrent SCNAs appearing in many samples.  Since we wish to focus on 
SCNAs, we want to remove forms of variation that we also see in normals. 
 
Tangent Normalization models this systematic variation as a linear combination of a 
large panel of diploid normals from many batches, using log space.  Ordinary Least 
Squares (OLS) is applied to each sample to determine this linear combination.  This 
weighted sum of normals lies within a subspace (the “tangent plane”) of the space 
containing all possible copy-number profiles; the weighted sum used for a particular 
tumor is that tumor’s projection into this subspace.  Further details are provided in 
Supplementary Methods. 
The modeled systematic variation is subtracted from each sample, and then the 
sample is offset to center the probes on a nominal diploid copy number. 
 
Tangent Normalization is applied to both tumor and normal samples, taking care 
that the normal is not itself included in the panel of normals.  Common regions of 
germline CNVs are excluded during this process, and subsequently reinserted.   
 
Recurrent CNVs within normals are identified through an adapted, abbreviated 
version of the overall pipeline.  The data for each normal sample are normalized and 
segmented using tangent normalization and Circular Binary Segmentation 
(Venkatraman and Olshen, 2007).  GISTIC G-scores (Mermel et al., 2011) 
representing the summed level of amplifications or deletions across samples are 
then computed at each locus.  Probesets within the tails of the G-score distribution 
(representing approximately 15% of all probesets) are identified as within 
recurrent CNVs and removed from further analyses.  
 
We include male and female samples in our panel of normals.  To account for the 
variation in the number of copies of X, we include in our panel a theoretical normal, 
the ‘ideal man,’ with copy-number precisely two throughout the autosomes and one 
throughout the X chromosome.   The resulting normalized data will adjust the copy-
number profile of X for any sample to a mean value of ~2.  Use of tangent 
normalization in this way discounts whole-chromosome (but not focal) changes in 
X.  Use of gender-matched normals can enable recovery of these SCNAs. 
 



The performance of tangent normalization depends on adequate representation of 
the noise profiles within the model to characterize all tumor samples being 
analyzed.  Potential sources of systematic noise include variability of conditions 
during PCR amplification, cross-hybridization, and variability of GC-content across 
the genome.  Therefore, we populate our noise model using normal samples that 
reflect all of the experimental conditions that generated our data.  The noise profile 
for a tumor is usually best matched by noise profiles of normal samples that were 
processed in the same batch and shared experimental conditions.  However, some 
tumors are found to have noise profiles that are best matched by normal samples 
from other batches, and we find that signal-to-noise ratios improve due to 
increasing noise reduction as the size of the pool of normal samples increases 
(Supplementary Figure S7c). Noise reduction can improve with a larger normal pool 
even for those tumors with noise profiles closely resembling the normal samples of 
the same batch (Supplementary Figure S6). Therefore, we construct a reference 
plane for tangent from the entire collection of TCGA blood-normal samples that pass 
levels 1 and 2 quality control. (See Quality Control below.) The current plane is 
based on 3154 TCGA blood-normal samples that pass quality control. 
 
Tangent Normalization Algorithm Details 
 
For i  1,2,3,… nN  where nN is the number of normal samples, the ith normal 
sample is represented as a vector, Ni, of log2 copy-ratio intensities in genomic order, 
with each coordinate corresponding to one of the non-CNV probes.  We use log2 
copy ratios because we have found that this representation works well for noise 
reduction, suggesting that much of the observed noise is multiplicative.  The noise 
space, N, is defined as the (nN – 1)-dimensional plane containing the vectors {N1 ,N2, 

N3,…, NnN . Note that nN – 1 << M, where M equals the dimension of the ambient (log2 
copy-ratio) coordinate space or equivalently, the number of markers not excluded 
as poor quality or potential CNVs.  Similarly, for j  1,2,3,… nT  and nT equal to the 
number of tumor samples, Tj represents the jth tumor sample in the same format as 
Ni.  The noise profile for a tumor, Tj, is determined as the point in N that is closest to 

Tj using a Euclidean metric, i.e. the projection, p(Tj), of Tj on N.   The resulting 

normalization of Tj is set to the residual, Tj  - p(Tj). 
 
The projection p(Tj) can be computed directly using standard linear algebra 
techniques.  A rigid transformation of Euclidean marker space prior to 
normalization does not alter the resulting normalization of Tj.  In particular, an 
appropriate translation of Euclidean space ensures that N  passes through the origin 

and forms a vector subspace of Euclidean space.  It follows that  
 

(iii)    p(Tj) = N*Npi* Tj 

 

after translation, where N is the array whose columns correspond to nN – 1 normal 
samples that span N and Npi is the pseudoinverse of N. 



We include both male and female normal samples, which differ in the number of 
copies of X.   The inclusion of the X chromosome in tangent normalization requires 
special treatment to ensure that the distance from a tumor to a normal reflects noise 
differences, without being artificially inflated due to gender difference.  Additionally, 
we must take into account that the normalization, Tj  - p(Tj), of Tj could potentially 
alter the apparent chromosomal copy number of X, due to the fact that p(Tj) is a 
weighted average of copy ratios from both male and female samples.  To address 
these issues, we include in our reference plane a theoretical normal, the ‘ideal man,’ 
with copy-number precisely two throughout the autosomes and one throughout the 
X chromosome.  Tangent normalization against this expanded collection of normal 
samples will adjust the copy-profile of X for any sample, regardless of gender, to a 
mean level with ~2 copies of X.  The ensuing analysis can detect focal SCNAs within 
X, but discounts whole-chromosome changes of X.  Currently, the Y chromosome is 
excluded from tangent normalization.  Use of gender-matched normals may enable 
recovery of whole-chromosome SCNAs involving X. 
 
The large number of reference normal samples presents computational challenges 
as the projection matrix depends on the computation of the pseudo-inverse of an    
M x nN matrix (~1.5 x 106 x 3000).  To address this issue, we mimic Gram-Schmidt 
orthogonalization, but on a blockwise level, and decompose the reference plane into 
orthogonal blocks so that the projection, p(Tj), can be computed on a block-by-block 
basis with only one block in memory at a time.  Each block of data represents 
approximately 250 normal samples, typically from multiple batches.  The 
orthogonalization process replaces the ith block of normal data by its tangent 
normalization against blocks 1 through i-1.  When a new batch is processed, an 
additional block is added using the normal samples from the batch at hand, which 
are themselves first normalized against the reference normal samples.   We are 
somewhat less stringent in our quality control for the current batch to allow tissue 
normal samples as well as blood normal in order to ensure adequate representation 
of the noise profiles for the batch at hand.  Our current reference plane consists of 
13 blocks; we periodically expand our reference plane as additional TCGA data 
becomes available. 
 
 
 
Tangent Analysis on TCGA Glioblastoma Data 
 
The glioblastoma analysis was based on 497 TCGA tumors and 451 TCGA normal 
samples that were processed with these tumors.  This is a reduced collection of 
normal samples compared to our standard analyses involving over 3000 normals.  
We used this reduced set to enable fair comparisons to other normalization 
techniques (Supplementary Figures S4, S5, and S7a-b).  The X and Y chromosomes 
were excluded from these normalizations so that differences in the handling of the 
sex chromosomes would not contribute to the comparisons (this is not required for 
tangent normalization).  The CNV probes were also excluded for the same reason.  
The preprocessing prior to normalization was identical for all three normalization 



techniques.  The representation of each sample as a vector of log2 copy-ratio 
intensities is identical to that described in the section Tangent Normalization above.   
 
For matched normals, the normalization of a tumor consists of subtracting from its 
log2 ratios those of its matched normal.  Only the 386 gliblastoma tumors with a 
matched normal could be normalized, demonstrating an additional limitation of this 
approach as compared to tangent or five nearest normals.  For five nearest normals, 
normalization consists of subtracting the mean of the five normals closest to the 
tumor based on a Euclidean metric.  
 
Supplementary Figures S4 and S7a-b demonstrate that the signal is preserved with 
all three normalization techniques, but only tangent normalization consistently 
reduces noise, thereby increasing the signal-to-noise ratio.  The impact of five 
nearest normals on noise is quite small while normalization by matched normals 
tends to increase noise and decrease the signal-to-noise ratio. 
 
The glioblastoma analyses specific to tangent were performed with the larger 
reference plane of 3154 TCGA normals obtained from patients with multiple cancer 
types.  This reference plane is also used by the tangent GenePattern module. In 
order to investigate the effect of the size of the normal reference pool on noise 
reduction, data was saved after each step in the block normalization procedure. 
Supplementary Figure S7c demonstrates that each additional block of normals 
added to the reference plane further reduces noise, although the greatest impact 
was achieved following the first 4-5 blocks, which collectively contain 1000-1250 
samples.  For the comparison in Supplementary Figure 6, tangent was also 
performed on each tumor using only the normal samples from the same batch.  
Whether the entire reference plane is used or only the normal samples in the same 
batch, Supplementary Figure 6 shows that tangent reduces noise as the post-
normalization to pre-normalization noise ratio is consistently below 1.  However, 
this scatter plot of these resulting noise ratios following tangent with the entire 
reference plane vs. tangent with batch normals reveals greater noise reduction for 
almost every tumor sample when the entire reference plane is included. 
 
Tangent Analysis on HCC1143 Replicate Data 
 
We further examined systematic noise within and across batches by way of 
HCC1143 blood normal samples that were processed on 118 arrays across 110 
batches and HCC1143 breast tumor samples that were processed on 138 arrays 
across 128 batches.  Systematic noise tends to produce consistent patterns of 
variation in the data across samples, while random noise does not.  A comparison of 
log2 copy-number ratios for the normal replicates prior to normalization revealed 
several distinct patterns of copy-number variation, each of which was evident for 
multiple replicates across many batches (Supplementary Figure S2a). Further, 
samples with similar patterns on one chromosome tended to be similar across the 
genome (data not shown).  We then examined 20 megabases of chromosome 1 for 
which the copy number of the HCC1143 tumor cell line is constant.  Variations in the 



pre-normalized log2 copy-number ratios across this genomic region for the tumors 
and the diploid normal were the result of noise.  Supplementary Figures S2b-c 
demonstrate that tangent normalization substantially eliminates this noise from the 
tumor samples. 
 
We then examined the normal replicates that were processed in the 8 batches 
containing multiple HCC1143 normal samples.  Sample replicate pairs with 
correlated noise were found both within batches and across batches, as were pairs 
with uncorrelated noise (data not shown).  
 
Overall, these results provide further evidence that a noise model built from normal 
samples processed across many batches will best represent systematic noise and 
facilitate noise reduction.  
 
Tangent Normalization Discussion 
 
The use of tangent normalization leads to substantially improved signal-to-noise 
ratios relative to prior methods (Supplementary Figure S7a).  We estimate signal as 
the standard deviation of median signal intensities among all chromosome arms, 
and noise as the median absolute difference between log2 copy-number ratios of 
adjacent probes.  The improvements in signal-to-noise ratios are the result of 
reduced noise (Supplementary Figure S7b, Supplementary Figure S3); signal 
remains essentially unchanged (Supplementary Figure S4).  As a result, segmented 
copy-number profiles generated after tangent normalization exhibit less hyper-
segmentation and systematic biases than profiles generated using other methods 
(Supplementary Figure S5). 
 
A tumor’s noise profile is usually matched best by normal samples from the same 
batch, but some tumors exhibit noise profiles that are best matched by normals 
from other batches (Supplementary Figures S2, S6).  As a result, signal-to-noise 
ratios improve as we expand the pool of normal samples (Supplementary Figure 
S7c).  For TCGA, we use all TCGA normal samples obtained from blood that pass 
levels 1 and 2 of quality control. 
 
Although this pipeline was developed for use with Affymetrix SNP array data, it can 
be extended to other SNP and comparative genomic hybridization (CGH) platforms. 
Moreover, we have had success applying similar concepts to Whole Exome and 
Whole Genome next-gen sequencing data.  Further improvements to signal-to-noise 
ratios are likely to be obtained through use of such data, from improved methods to 
calibrate and normalize those data, and from algorithms that determine differences 
in absolute rather than relative copy-numbers (Carter et al., 2012; Van Loo and 
Nordgard, 2010). 



 
Supplementary Figure S1.  Data flow through pipeline.  Schematic view of 
pipeline as exhibited in Figure 1, with key output files for pipeline modules and 
assigned TCGA levels included. 
 



 
Supplementary Figure S2.  Systematic noise for HCC1143 tumor and normal 
replicates. Segmented pre-normalized log2 copy-number ratios (low and high 
ratios indicated by blue and red, respectively) on (a) replicates of DNA from the 
HCC1143BL immortalized lymphocyte (non-cancer) line across 110 batches, 
chromosome 1, (b) replicates of the HCC1143 tumor cell line across 128 batches, 
chromosome 1, 160-180 megabases.  Comparisons between normal replicates 



indicate correlated variations across genomic regions, which are also observed in 
tumor replicates.  As these variations are observed in the same DNA, they represent 
artifact. (c) Segmented tangent-normalized data for tumor replicates, chromosome 
1, 160-180 megabases.  The systematic artifacts present in (a)-(b) are no longer 
observed.  Figures were generated with IGV. 

 
Supplementary Figure S3. Noise reduction following tangent normalization in 
a representative glioblastoma tumor. 100-marker moving average of log2 copy-
ratios for a representative glioblastoma sample across the autosomes before (black) 
and after (green) tangent normalization.  A moving average is employed for 
visualization purposes only. 
 



 
 
Supplementary Figure S4.   Signal across 497  TCGA glioblastoma tumors.  
Scatter plot of post-normalization vs. pre-normalization signal for three 
normalization methods, (a) tangent (red), (b) five nearest normals (green) and  (c) 
matched normals (blue), demonstrates that the signal level is largely unchanged by 
normalization for each of these three methods. 



 
Supplementary Figure S5.  Segmentation comparison for glioblastoma 
samples. (a-b) Post-segmentation results for selected glioblastoma samples 
following (a) 5NN and (b) tangent.  White is copy-neutral.  Blue indicates a deletion 
with intensity of color increasing as the copy-number decreases.   Samples are 
displayed in the same order in both panels.  Less hypersegmentation is observed 
when CBS is applied to tangent-normalized data.  Figures were generated with the 
Broad Integrative Genomics Viewer (IGV) (Robinson et al., 2011; Thorvaldsdottir et 
al., 2012) (c-d) Histograms of segment counts for 497 TCGA glioblastoma tumors 
when CBS follows (c) 5NN and (d) tangent.  Decreased segments counts for tangent 
normalized data is consistent with decreased hypersegmentation. 
 
 
 



 
 
Supplementary Figure S6. Noise reduction with tangent using normal samples 
across batches vs. normal samples within batch.  Noise ratio (post-normalization 
over pre-normalization noise) for glioblastoma samples following tangent 
normalization using our pipeline’s reference plane vs. tangent normalization using 
only the normal samples processed in the same batch as a tumor.  Almost all 
samples lie below the diagonal (x = y) indicating that there is greater noise 
reduction with the full reference plane. 
 
 
 
 
 



 

 
Supplementary Figure S7: Tangent Normalization of 497 TCGA glioblastomas.  
(a,b) Comparison of tangent to two other normalization techniques. (c) Box plot of 
post-normalization noise as a fraction of pre-normalization noise, following tangent 
normalization with each block of approximately 250 normals in sequence.  Block 0 
corresponds to pre-normalization. 


