
V-FAT USERS GUIDE

• General Description •
V-FAT (Viral Finishing and Annotation Toolkit) is a toolset to go from the raw
contigs output of a standard de novo assembler to an oriented, frameshift-
corrected and annotated assembly of the whole genome. It is a reference-guided
process that is meant to improve the final result of a de novo assembler by
providing additional information. If read data are provided, they will be used to
improve the contig merging and the frameshift correction by looking for read
support. It has been designed for use on viral RNA genomes, which are relatively
short (10-15 kb) and free of repetition. It should work on any type of data that
share these characteristics.

It has 5 main steps, which will be explained in more details in the section devoted
to each script:

1) orientation and filtering of the raw contigs
2) merging of the contigs where they overlap based on a reference alignment
3) correction of frameshifts found in coding regions
4) annotation of the genes based on the new assembly
5) quality assessment, collecting statistics about the assembly, generating

coverage plots and raising flags about potential issues in the final
assembly.

This package includes the following scripts. A more detailed description of each
along with their options will follow:

1) vfat.pl. This script is essentially a wrapper that runs through all of the 5 main
scripts from start to finish.

2) orientContig.pl. This script orients the contigs to the reference and filters out
contigs that are too distant to be believed to be from the same organism, or too
short.

3) contigMerger.pl. This script merges contigs together that overlap when
aligned to a reference genome. If read data are provided, the merger will look for
read support when deciding which contig to favor if there are variants in the
overlapping regions.

4) fixFrameshifts.pl. This script looks for frameshifts (regions with gaps that are
not multiple of 3s) within coding regions and fixes them if there are reads
supporting it. It is also possible to force correction in homopolymer regions even
if no reads are provided.

5) annotate.pl. This script will use a database of peptides found on the reference
genome and the external software genewise to locate genes on the assembly

and annotate their position. It will also look for potential issues in the genes such
as remaining frameshifts, lack of an expected start or stop codon, etc.
6) QA_stats.pl. This script looks into the output files from the previous scripts in
the pipeline as well as read alignments against the reference and the assembly
to calculate statistics, generate coverage plots using R, and highlight potential
issues in the genome.

7a) runMosaik2.pl. This a perl utility script to help running Mosaik with the
various options required by the pipeline and to convert the output in the .qlx
format, which is used by QA_stats.pl. The read alignments will also be output in
the bam format.

7b) samToQlx.pl. This the perl utility script used to convert the Mosaik output in
the .qlx format, which is used by QA_stats.pl.

8) configPaths.pl. This is a utility script meant to modify the paths to the various
scripts and external software used by the pipeline in each part of the pipeline
without having to manually open the files. See the end of the section for specific
details on how to setup at the Broad.

The scripts qlxToSam.pl, fastq2fasta.pl, fqpair2fasta.pl and translateDna.pl
are also included in the package for file conversion purpose. See the file format
section for their use.

• Citing V-FAT •

*** Bioinformatics Application Note Reference incoming ***

• Required External Software •

1) MUSCLE v3.8. The MUSCLE aligner (http://www.drive5.com/muscle/) is used
by the other scripts when global alignments are required. Using a different
version of MUSCLE might require modifying command lines in the scripts, but
should not be a major endeavor.

2) R. R is a statistical package that is used by V-Profiler in order to generate
Heatmaps. It is available at http://www.r-project.org/. Version 2.9 or more is
required.

3) Mosaik. Mosaik is a reference-guided assembler and short-read aligner using
a Smith-Waterman based algorithm. The read alignment process is used by
RC454. It can be found at http://bioinformatics.bc.edu/marthlab/Mosaik. The
version used and tested extensively with these other tools is 2.1.

4) GeneWise. GeneWise compares a protein sequence to a genomic DNA
sequence, allowing for introns and frameshifts. It is used to identify gene
positions in a new assembly when comparing to a list of reference peptides. It
can be downloaded at : ftp://ftp.ebi.ac.uk/pub/software/unix/wise2/. The version
used and tested is wise2.2.0

• Quick Start •

While there is many parameters that can let you customize your analyses and all
scripts included can be run individually, in most cases all you should need to do
is do a quick installation/setup and run the main wrapper. Here is a step-by-step
procedure of the minimum that is required to do:

1) Install all the required external softwares specified above if you do not
have them. Mosaik is only required if you supply read data.

2) Fill in the paths in configfile.txt and run configPaths.pl. For more details,

see the full section about the script. The command line for it is:
perl configPaths.pl configfile.txt

3) If you do not already have them, make a gene list, amplicon positions list

and peptides folder for the reference you want to use. See the “File
Formats” section at the end for details. A folder containing multiple
correctly formatted reference genomes is contained in the package
(ViralReferenceGenomes) and has among others HIV, DENV 1 to 4 and
WNV references ready.

4) Run vfat.pl wrapper with the following command line:

perl vfat.pl -contigs <contigs.fa> [-readfa <reads.fa> -readq
<reads.qual>] -ref <reference.fa> -genelist <ref_genelist.txt> -amps
<ref_amplicons.txt> -pepfolder <peptidesFolder> -o
<outputBasename>

If you wonder what some of the files need to be or what the parameters
available are, see the vfat.pl section as well as the sections covering the
particular script you have questions about. Each section will also explain
in details what the output files coming out of it are.

• Script Usage •

1) V-FAT:

vfat is the main wrapper that will run the whole process from start to end. It has 5
main steps, which will be explained in more details in the section devoted to each
script:

1) orientation and filtering of the raw contigs
2) merging of the contigs where they overlap based on a reference alignment
3) correction of frameshifts found in coding regions
4) annotation of the genes based on the new assembly
5) quality assessment, collecting statistics about the assembly, generating

coverage plots and raising flags about potential issues in the final
assembly.

Algorithm overview :

The exact steps done by contig2assembly are the following:

1) run orientContig
2) run contigMerger
3) run fixFrameshifts
4) If reads are supplied, runMosaik, once against the reference and once

against the fixed assembly
5) run annotate
6) run QA_stats
7) sort output files

Command Line

The detailed command line for vfat is the following:

vfat.pl -contigs <contigs.fa> [-readfa <reads.fa> -readq <reads.qual>] -ref
<reference.fa> -genelist <ref_genelist.txt> -amps <ref_amplicons.txt> -
pepfolder <peptidesFolder> -o <outputBasename>

If your reference data is organized in a specific way, you can also use the -virus
option that will fill out most of input file parameters for you (see –virus parameter
for more details):

vfat.pl -contigs <contigs.fa> -virus <virus> [-readfa <reads.fa> -readq
<reads.qual>] -o <outputBasename>

Input Files:

-contigs <contigs.fa> : a fasta file containing all the contigs obtained from the
assembler. The contigs will be renamed ‘contig_0’, ‘contig_1’, etc. The number
corresponds to the order of the contig in your original file.

-ref <reference.fa> : a fasta file of the reference genome that will be used to
orient the contigs.

-genelist <reference_genelist.txt> : Gene list with their start and stop positions on
the reference (see “file format” section for more details)

-amps < reference_amplicons.txt > : Start/stop positions for the amplicons used
in sequencing. The format used is the same as the genelist format (see “file
format” section)

-pepfolder <peptides_folder> : Folder containing the peptides fasta used by
GeneWise and a [Virus]_Peptides_Features.txt parameter files. See the “file
format” section for more details

-readfa <reads.fa> : optional, reads in fasta format

-readq < reads.qual > : optional, read quality in spaced-delimited integers format

Parameters:

Only some parameters specific to the functioning of the V-FAT wrapper will be
listed here. Note that ALL parameters from any of the 5 main scripts
(orientContig, contigMerger, fixFrameshifts, annotate, QA_stats) can be given to
V-FAT and it will use them when calling the program it applies to. For use of
these parameters, see the section specific to each script.

The value between the brackets <> is the default value if the parameter is not
entered. The type of the parameter is written in parenthesis (). A ‘boolean’
parameter does not need any value specified, you can simply do -parameter.

-sequencer <illumina> (string)
Type of sequencing data. This will modify the parameters used by the Mosaik
aligner to better handle the known error modes of each type of sequencing.
Currently supports ‘illumina’ and ‘454’ (others will use the illumina parameters).

-fakequals <0> (integer)
Fakes quality scores in the Mosaik alignments to a given score (integer set by
the parameter). This will not affect the functionality of V-FAT and will speed it up,
but the qlx files would not be proper for use with some other software like V-
Phaser. In general this parameter is recommended.

-virus <NULL> (string)
Specify the virus to use for reference data (including gene list, amplicons and
peptides folder). This option requires the reference files to be named and located
in a specific manner. The virus name is case sensitive. If you want to use this
parameter, the files need to be named and organized as follow:

The reference fasta name must be : [virus]_Reference.fasta
The genelist name must be : [virus] _Reference_genelist.txt
The amplicons list name must be : [virus] _Reference_amplicons.txt
The peptide folder name must be : [virus]_Peptides (see File Formats section for
details about the Peptide folder)

The script will look for the files in the location specified by the variable
refDataPath (set by the configPaths.pl script, see this section for details),
followed by a folder named [virus]. An example of how files could be named and
organized with data for 2 viruses, HIV and RSV:

refDataPath (as configured by configPaths.pl) : /my/home/folder/

HIV files:

/my/home/folder/HIV/HIV_Reference.fasta
/my/home/folder/HIV/HIV_Reference_genelist.txt
/my/home/folder/HIV/HIV_Reference_amplicons.txt
/my/home/folder/HIV/HIV_Peptides

RSV files:

/my/home/folder/RSV/RSV_Reference.fasta
/my/home/folder/RSV/RSV_Reference_genelist.txt
/my/home/folder/RSV/RSV_Reference_amplicons.txt
/my/home/folder/RSV/RSV_Peptides

The file format section has some extra details on the formats of each individual
file.

The package already includes a folder named ViralReferenceGenomes that
contains correctly formatted reference data for multiple viruses such as HIV,
DENV 1 to 4, and WNV (among others). Adding the path to this folder in the
configfile.txt will allow an easy use of the -virus option.

-details <NULL> (boolean)
Using this parameter will keep all the temporary files that could be useful for
debugging purposes or to manually modify part of the results (for example editing
manually a frameshift). All of these additional files will be in the folder
<output>_additionalFiles. In the output files section for each script, the files that
are under “secondary outputs” will be moved to this folder and deleted unless this

parameter is set. Occasionally some of the other outputs will too (for example the
assembly generated by contigMerger will be moved, because it is replaced by
the one returned by fixFrameshifts)

Output Files:

a) <output>_commandlog.txt : File containing all the command lines sent to the
terminal by the wrapper with detailed parameters and input file names. The main
purpose of this file is to allow you to rerun specific steps of the analysis easily,
with different parameters if required, without having to go through the whole
wrapper again. It can also allow you to manually modify a specific file (manually
fix some frameshifts that were reported but not automatically corrected by the
fixFrameshifts script for example) and then run the following steps using this
modified file instead.

Secondary outputs:

b) <output>_additionalFiles : V-FAT will move in this folder output files that could
be useful but are considered secondary in interest to prevent an excess of files in
your main results folder. This folder will be deleted unless the parameter -details
is specified.

All other output files are part of the specific outputs of each individual script and
will be detailed in each individual section.

2) orientContig:

orientContig.pl is a script that orients raw contigs obtained from an assembler to
a reference genome, and filters out contigs that are not considered good enough
to be used in merging. The filtering is done based on 2 parameters :

a) Length of the contig. All contigs below a set minimum length are
filtered out.

b) Quality of the alignment of the contig to the reference.

The orientation of the contig is determined based on both the percentage of gaps
and the longest segment of the contig aligned to the reference without containing
a gap longer than a set maximum length.

Algorithm overview :

For each contig in the input file:

1) Check if contig passes basic length filter

2) Align contig to reference in both orientations

3) Calculate percentage of gap in both orientations

4) Calculate longest aligned segment for the contig. Segments start when you
have data both for the reference and the contig, and end when there is a gap of
length greater than [maxorigaplen]. Contigs where the longest continuous
segment is shorter than [minlongcont] in both orientations are filtered out as they
are more likely to be from a different organism or misassembled.

5) Compare the gap % and longest contig value in both orientations in order to
determine the correct orientation. Length of the longest segment is the most
important parameter, but if its difference between both orientations is less than 2-
fold, gap percentage will be used to help determine which is correct.

In the vast majority of cases, there is a very clear difference between both
orientation and no ambiguity.

Command Line

The main command-line for running orientContig is:

orientContig.pl <contigs.fa> <reference.fa> <output>

Input Files:

<contigs.fa> : a fasta file containing all the contigs obtained from the assembler.
The contig headers should not contain spaces or special characters.

<reference.fa> : a fasta file of the reference genome that will be used to orient
the contigs.

Parameters:

3 parameters can be set (with their default value) :

-mincontlen <350> (integer)
Minimum length of a raw contig. Any contig below this length will be filtered out
from the start.

-minlongcont <100> (integer)
Minimum length of a segment from a contig that must align to the reference
without a gap longer than [maxorigaplen] for the contig to be considered.

-maxorigaplen <10> (integer)
Maximum length of a gap allowed within a segment of a contig when determining
the longest contig.

Output Files:

a) <output>.fa
Fasta file containing all the remaining contigs in the correct orientation

Secondary outputs:

b) <output>_<contigname>_orientalign.afa
Aligned fasta file containing the contig <contigname> aligned to the reference in
the proper orientation. Only present for contigs that passed filters.

3) contigMerger :

contigMerger.pl is a script that takes a list of contigs aligned to a reference and
merges them where they overlap. If no overlap are present, it will fill the
assembly with strings of Ns. If read data is given, it will use it in order to
determine which variants have more read support when overlapping contigs have
differences. If no read data is given, the merging will occur in the middle-point of
the overlapping region.

Algorithm overview :

1) Split contigs into segments that have a continuous alignment to the
reference. Segments start at a position where both the reference and the
contig have a base aligning, and will extend until either reaching the end
of the contig or until a deletion in the alignment longer than [maxseggap]
or an insertion longer than [maxsegins]. More than one segment can be
built per contig. Segments will be kept for merging purpose if they are
longer than [minseglen] and do not have an internal fraction of gaps
greater than [maxsegdel].

2) Map where the segments from each contig cover the reference and
overlap with each other.

3) Add contigs to the list of contigs to merge in decreasing order of length
until the segments from these contigs cover the reference (or as much of it
possible given the available segments mapping). If reads are supplied,
more contigs can be added until the reference is covered at [contigcov]X
coverage. The reason to add these extra contigs is that they might not be
the longest but could have higher read support, making them more
representative of the underlying population.

4) If reads are supplied, align reads to each of the contigs in the list of
potential contigs to use for merging.

5) Merging process WITHOUT read support:
a) Walk across the reference from start to finish
b) When a single contig segment covers a stretch of the reference, add it

to the merged assembly
c) If multiple segments cover a stretch of the reference, add the one that

ends at the latest position in the reference. If this segment is different
than the one that was covering the previous stretch of the reference,
merge them at the middle-point of their overlap.

d) If no segment cover a certain stretch of the reference but you have
segments covering the reference before and after, add a string of Ns
covering this stretch of the reference to the merged assembly.

6) Merging process WITH read support:
a) Walk across the reference from start to finish
b) When a single contig segment covers a stretch of the reference, add it

to the merged assembly

c) If multiple segments cover a stretch of the reference, for each
difference that they have add to the merged contig the variant that has
the highest read support.

d) If no segment cover a certain stretch of the reference but you have
segments covering the reference before and after, add a string of Ns
covering this stretch of the reference to the merged assembly.

Command Line :

The basic command line for running contigMerger is:

perl contigMerger.pl <orientContigOutput> <reference.fa> <output> [-readfa
<reads.fa> -readq <reads.qual>]

Input File:

<orientContigOutput> : base name of the output files of the orientContig script. It
is important to have the same output name as the one entered in the orientContig
command line because contigMerger will use all the output files from orientContig
such as the contig to reference alignment to prevent rerunning them all again.

<reference.fa> : reference fasta file

<reads.fa> : optional input file, fasta of the reads

<reads.qual> : optional input file, quality score of the reads (must be given if the
reads fasta is given)

Parameters :

-readfa <NULL> (string)
Name of the reads.fasta input file

-readq <NULL> (string)
Name of the reads.qual input file

-mincontlen <350> (integer)
Minimum length of a raw contig. Any contig below this length will be filtered out
from the start.

-maxseggap <30> (integer)
Maximum gap length before splitting segments

-maxsegins <60> (integer)
Minimum length of a raw contig. Any contig below this length will be filtered out
from the start.

-minseglen <50> (integer)
Minimum length of a contig segment that will be added to the merging process

-maxsegdel <0.25> (integer)
Maximum fraction of internal gap that a contig segment can have to be added to
the merging process

-longcont <1500> (integer)
All contigs above [longcont] will be considered in the merging process, even if all
the reference is already covered by longer contigs

-contigcov <2> (integer)
Fold-coverage of the reference after which no other contigs will be considered for
merging (with the exception of contigs longer than [longcont])

-allcont <NULL> (boolean)
Forces the use of all contigs in the merging process regardless of coverage or
length.

-sequencer <illumina> (string)
Type of sequencing data. This will modify the parameters used by the Mosaik
aligner to better handle the known error modes of each type of sequencing.
Currently supports ‘illumina’ and ‘454’ (others will use the illumina parameters).

-fakequals <0> (integer)
Fakes quality scores in the Mosaik alignment to a given score (set by the
parameter). This will not affect the functionality of contigMerger and will speed it
up, but the qlx files would not be proper for use with some other softwares like V-
Phaser. In general this parameter is recommended.

Output Files:

a) <output>_assembly.fa
Fasta file containing an assembly of the merged contigs

b) <output>_contigsMap.[pdf/R]
Pdf graph showing where the contigs that were used for the contig merging
map on the reference genome. R file that was used to generate the graph is
also conserved for manual modifications if desired.

c) <output>_largeDeletions.txt
List of the large deletions (deletions longer than [maxseggap]) found in the
contigs that were used for the merging. Sometimes these large deletions can
be filled by another contig in the merged genome but can represent real
variants in the population.

d) <output>_mergingList.txt
Text file containing a list of the contigs that were merged together across
each stretch of the reference. Each line contains the start and stop position of
this stretch of the reference, then which contig was used to cover it (it could
be a single contig, or a mix of contig if they overlapped and part of both were
used, or a stretch of Ns if no contig was covering the region), and the start-
stop positions in this contig. It also notes how many different contigs were
necessary to build the assembly.

Example:

1 468 contig_2a 1-469
469 589 contig_2a 470-590
590 709 contig_4 175-294
710 856 contig_4 295-441
857 904 contig_4 442-489
905 952 contig_1 136-183
953 4096 contig_1 184-3324
4097 4219 123N
4220 7328 contig_0 98-3230
7329 7375 contig_0 3231-3277
7376 7421 contig_3 136-181
7422 7946 contig_3 182-706
7947 8039 contig_3 707-800
8040 8132 contig_6 95-187
8133 8240 contig_6 188-295
8241 8309 contig_6 296-364
8310 8378 contig_2b 176-244
8379 8764 contig_2b 245-960

NB CONTIG USED: 7

contig_0
contig_1
contig_2a
contig_2b
contig_3
contig_4
contig_6

Secondary Outputs:

d) <output>_vsRef.[mfa/afa]
Alignment of the merged assembly against the reference (.mfa is unaligned,
.afa is aligned)

e) <output>_<contig>.[fa/qlx] (only if read data is supplied)
Fasta file of the contigs used for the merging, and the read alignment in qlx
format against each of them.

4) fixFrameshifts :

fixFrameshifts.pl is a script that attempts to correct all the frameshifts found in the
coding regions of the merged assembly. If a read alignment is supplied, it will
look for reads supporting a modification of the assembly that would remove the
frameshift. If no read alignment is supplied, it will make notes of all the
frameshifts found, and optionally will correct frameshifts located in an
homopolymer region.

Algorithm overview :

1) Align the merged assembly to the reference
2) Find all frameshifted windows in coding regions (which are based on a

supplied gene list from the reference). A frameshifted window is a stretch
of DNA of length ([readwindow] * 2 + length(central indel)) where you have
a total of (inserted bases minus deleted bases) that is not a multiple of 3.

3) For each frameshifted window, determine if the central indel is in an
homopolymer or not

4) Merge frameshifted windows that are closer than ([readwindow] * 2)
nucleotides apart together

5) If a read alignment is supplied, correct frameshifted windows where the
dominant window found in the reads does not contain a frameshift

6) As options, you can also : force correction of any frameshift in an
homopolymer by extending/reducing the homopolymer length accordingly.
This requires at least 1 read support if a read alignment is supplied; force
correction by selecting the most frequent non-dominant window that
corrects the frameshift as long as it’s present in the reads in a fraction
over [forcefix]; not fix any frameshift, only note them in the log.

Command Line :

The basic command line for running fixFrameshifts is:

perl fixFrameshifts.pl –fa <merged_assembly.fa> -ref <reference.fa> -genelist
<reference_genelist.txt> -o <output> [-qlx <readalignment.qlx>]

Input File:

-fa <merged_assembly.fa> : Merged assembly obtained by contigMerger. This
could also be any assembly that you want to look at frameshifts on obtained by
another method.

-ref <reference.fa> : reference fasta file

-genelist <reference_genelist.txt> : Gene list with their start and stop positions on
the reference (see “file format” section for more details). Note that the software

assumes that the reference gene annotations are correct and free of
frameshifting indels.

-qlx <readalignment.qlx> : optional input file that will use read alignment to
support the correction of frameshifts in the assembly. contigMerger, if used with
supplied reads, will generate this file in its outputs.

Parameters :

-minhomosize <3> (integer)
Minimum length of an homopolymer to call the variant in an homopolymer.
Suggested lengths are 3 for illumina data and 2 for 454 data.

-readwindow <5> (integer)
Length of the nucleotides window on each side of an indel to look for further
indels that could remove the frameshift. It will also determine the size of the
windows to look for in the reads that could correct the frameshifts.

-nofix <NULL> (boolean)
Adding this parameter will disable any automatic modification to the assembly. It
will still note all the frameshifts and suggested replacement windows in the log.
This parameter will take precedence over the -fixhomo and -forcefix parameters.

-fixhomo <NULL> (boolean)
This parameter will force the correction of frameshifts in homopolymers. If a read
alignment is supplied, it will still require at least 1 read to support the correction.

-forcefix <0> (float)
If this parameter is set to a fractional value]0-1], it will correct frameshifted
windows in the assembly even if they are the dominant window found in the
reads, as long as the most frequent window that would remove the frameshift is
found at a frequency >= <forcefix>.

Output Files:

a) <output>_fixed_assembly.fa
Fasta file containing the assembly with the frameshift fixes (if any) in it.

b) <output>_frameshifts_log.txt
Text file that keeps a lot of all the frameshift found in the genes. It tells you the
positions in the assembly where the frameshifts happen, if it is in an
homopolymer or not and the length difference with the reference (a negative
number means that it is shorter than the reference, a positive number that it is
longer). It will also show you the window around the frameshift in the assembly,
and if you supply reads it will find the windows in the reads covering the same
positions and the frequency of the top 3. It will tell you which window (if any)

could fix the frameshift, and if it did fix it or not in the fixed_assembly.fa file
(depending on the parameters that you gave it). Here is an example of an entry
in the log:

Potential FS Window starting at 3064 in gene NS1 with gap of length -1
It contains 1 frameshifts:
3069 in homopolymer

Assembly Window :
GAAGTTAAAGC

Top 3 Read Windows:
GAAGTTAAAAGC 290
GAAGTTAAAGC 31
GAAGTTAAAAAGC 17

Best Replacement Window : GAAGTTAAAAGC (290/374)
FIXED

Secondary outputs:

c) <output>_alignPair.[mfa/afa]
Alignment of the assembly to the reference before fixes

d) <output>_alignPair_fixed.[mfa/afa]
Alignment of the assembly to the reference after fixes

5) annotate :

annotate.pl is a script that takes fastas of peptides from the genes found on the
reference and uses GeneWise to position them on the assembly. It will also
return flags to point out genes that could still contain frameshifts, or have a short
length, are missing a start or stop codon, etc. One of its outputs is in a format
used for NCBI submission.

Algorithm overview :

1) Run GeneWise to locate the peptides on the assembly
2) Attempt to improve GeneWise results if they ignored stop codons or cut

genes too early due to a mismatch near the ends.
3) Determine which genes are present, partial or missing. Note that

GeneWise will always attempt to match a peptide on the assembly even if
the alignment is very bad and will usually not return that a peptide is
missing, so some parameters are required to differentiate a partial gene
from a missing gene.

4) Verify if all flags are passed and return various output files

Command Line :

The basic command line for running annotate is:

perl annotate.pl –fa <fixed_assembly.fa> -ref <reference.fa> -genelist
<reference_genelist.txt> -pepfolder <peptides_folder> -o <output> [-align
<assemblyVsReferenceAlignment.afa>]

Note : before running, be sure to set the environment variable used by Genewise
setenv WISECONFIGDIR Path/To/Genewise/wise2.2.0/wisecfg/

Input File:

-fa <fixed_assembly.fa> : Final assembly obtained by fixFrameshifts.pl (and
manually edited if required).

-ref <reference.fa> : reference fasta file

-genelist <reference_genelist.txt> : Gene list with their start and stop positions on
the reference (see “file format” section for more details)

-pepfolder <peptides_folder> : Folder containing the peptides fasta used by
GeneWise and a [Virus]_Peptides_Features.txt parameter files. See the “file
format” section for more details

-align < assemblyVsReferenceAlignment.afa > : optional aligned fasta of the
assembly against the reference. If it’s not supplied, annotate will use Muscle to
generate one.

Parameters :

-maxannogaplen <50> (integer)
Maximum gap length allowed in a gene before forcing the split into 2 exons.

-minpctid <0.4> (float)
Parameter to distinguish partial genes from missing genes. A partial gene must
have an identity of at least 40% with the peptide sequence.

-minpctlen <0.2> (float)
Parameter to distinguish partial genes from missing genes. A partial gene must
have a length of at least 20% of the peptide sequence.

Output Files:

a) <output>_annotation_genelist.txt
Text file containing the gene names and their start/stop positions in the assembly
in tabulated format. Example:

Caps 87 428
Memb 429 926
…

b) <output>_annotation_ncbi.txt
Text file containing the genes, their product and their start/stop positions in ncbi-
submission format. It also adds a 5’UTR and 3’UTR to the genome automatically
before the first gene and after the last gene (unless the first/last gene is partial or
missing). Example:

1 86 5'UTR
 note indels in UTR have not been validated
87 428 mat_peptide
 product anchored capsid protein
429 926 mat_peptide
 product membrane glycoprotein precursor

c) <output>_ annotation_summary.txt
Text file containing the gene names, start/stop positions, as well as various flags
that can identify potential problems in the genes. The flags are:

Completion: Is the gene complete? Can be “Full”, “Partial” or “Missing”.
Size : Is the gene within 10% length of the reference one? 1 = yes, 0 = no
Start/Stop : Does the gene have expected start/stop codon? 1 = yes, 0 = no

* Note that the requirement of a start/stop codon is stated in the
Peptides_Features.txt input file. It will not require genes to have a start/stop
codon to pass the flag unless specified in the input file.
Frameshift : Does the gene contain a frameshift? 1 = no, 0 = yes
Internal N string : Does the gene contain an internal string of N (which would
mean it was artificially bridged but was lacking data)? 1 = no, 0 = yes
Exons : Does the gene contain the expected number of exons? 1 = yes, 0 = no
* Expected number of exons comes from the reference genelist. Genes will be
expected to have 1 exon, unless gene names are followed by _exon#, in which
case the number of exons will be calculated.
All : Are all flags passed (i.e. = to 1 or complete)? 1 = yes, 0 = no

Example:
Gene NbExon Completion Start Stop Flag Size Flag Start/Stop
 Flag Frameshift Flag Internal N String Flag Exons All Flags
Ok
Caps 1 Full 87 428 1 1 1 1 1 1
Memb 1 Full 429 926 1 1 1 1 1 1

Secondary outputs:

d) <output>_ annotation
Folder containing the raw results from GeneWise for each gene. See GeneWise
documentation if you need more clarifications.

e) <output>_ annotation_aligned.[mfa/afa]
Aligned assembly to the reference.

6) QA_stats :

QA_stats.pl is a Quality Assessment script that summarizes various statistics
about the assembled genome that was generated from the 4 previous steps. If
read data is supplied, it will also calculate average coverage over the assembly,
by gene and by amplicons, as well as provide coverage plots.

Algorithm overview :

If there are no reads supplied, there is no algorithm to speak of. The script only
reads in input files and summarizes information already collected in the other
steps.

If there is reads, there is a small algorithm used for calculating coverages:

1) Build nucleotide frequency tables at each position by counting the
occurrence of each base at each position in the read alignments

2) Calculate the average coverage for each feature (full assembly, gene or
amplicon) by taking the average of all counts per position covered by the
feature in the read alignment against the reference.

3) Calculate the percentage of non-dominant mismatches and indels by
counting each position where the base (or indel) that is the most present
in the read is not the one present in the assembly.

Command Line :

The basic command line for running annotate is:

perl QA_stats.pl -assem <fixed_assembly.fa> -ref <reference.fa> -genelist
<reference_genelist.txt> -amps <reference_amplicons.txt> -annot
<annotation_summary.txt> -mergelist <contigMerger_mergelist.txt> -mergeR
<contigMerger_contigMaps.R> -virus <virusName> -o <output> [-readfa
<reads.fa> -qlxref <readsToReferenceAlignment.qlx> -qlxass
<readsToReferenceAlignment.qlx>]]

Input File:

-assem <fixed_assembly.fa> : Final assembly obtained by fixFrameshifts.pl (and
manually edited if required).

-ref <reference.fa> : reference fasta file

-genelist <reference_genelist.txt> : Gene list with their start and stop positions on
the reference (see “file format” section for more details)

-mergelist < contigMerger_mergelist.txt > : <output>_mergingList.txt output file
from the contigMerger script.

-amps < reference_amplicons.txt > : Start/stop positions for the amplicons used
in sequencing. The format used is the same as the genelist format (see “file
format” section)

-annot < annotation_summary.txt > : <output>_annotation_summary.txt output
file from the annotate script.

-mergeR < contigMerger_contigMaps.R > : <output>_contigMaps.R output file
from the contigMerger script

-virusName < virusName > : Name of the virus. If none is supplied, the script will
assume that whatever is found in the reference file name before the first ‘_’
character is the virus name (example : HIV_Reference.fa). This is only used in
some of the output texts and has no effect on functionality.

-readfa < reads.fa > : optional reads fasta file

-qlxref < readsToReferenceAlignment.qlx > : optional reads alignment to the
reference in qlx format

-qlxass < readsToAssemblyAlignment.qlx > : optional reads alignment to the
assembly in qlx format

Parameters :

None

Output Files:

a) <output>_QA_ StatsDetailed.txt
Output file that contains all the stats calculated by the QA script. Here is an
example of an output file:

Files used:
Reference File : Path/To/Ref/DENV2_Reference.fasta
Assembly File : TestDen2_fixed_assembly.fa
Read Alignment vs Reference : TestDen2_alignVsRef.qlx
Read Alignment vs Assembly : TestDen2_alignVsAssembly.qlx
Reference Genelist : Path/To/Ref/DENV2_Reference_genelist.txt
Reference Amplicons : Path/To/Ref/DENV2_Reference_amplicons.txt
Contig merging list: TestDen2_merger_mergingList.txt
Contig merging R file: TestDen2_merger_contigsMap.R
Annotation summary : TestDen2_annotation_summary.txt
Reads file : Path/To/Reads/TestDen2_reads.fa

Reference data

Virus : DENV2
Length reference : 10723
Nb Amplicons : 4
Nb Genes : 11
Target region : 97-10272

Assembly QC General Stats

Length Assembly : 10668
% Reference Covered : 100.000%
Nb Contigs Used in Assembly : 2
Nb N strings inserted to merge Assembly: 0
Nb Genes Fully Covered : 11
Nb Genes Partially Covered : 0
Nb Genes Missing : 0
Nb Full Genes with Frameshift : 1
Nb Full Genes missing Start/Stop codon : 0
Nb Full Genes with N-string : 0

Assembly QC Coverage Stats

Nb Reads in input : 9852
% Reads Aligned to Reference : 76.421%
% Reads Aligned to Assembly : 76.726%

* Coverage Data vs Reference *
Average Coverage Target: 251.228
Standard Deviation Coverage: 108.472
%Reference Covered at 1X : 100.000%
%Reference Covered at 10X : 100.000%
%Reference Covered at 50X : 95.715%
%Reference Covered at 200X : 71.570%

* Coverage Data By Gene (vs Reference) *
Caps 56.579
Memb 217.669
Env 306.339
NS1 348.023
NS2A 236.627
NS2B 227.505
NS3 309.976
NS4A 330.118
2KPep 271.493
NS4B 298.539
NS5 155.945

* Coverage Data By Amplicon (vs Reference, non-overlapping region only)
*
Amp1 245.033
Amp2 211.811
Amp3 300.993
Amp4 70.104

* Coverage Data vs Assembly *
Average Coverage Assembly: 241.076
Standard Deviation Coverage: 117.546
% Positions with non-dominant base call : 0.000281214848143982
% Positions with non-dominant deletion call : 0
% Positions with non-dominant insertion call : 0

b) <output>_QA_ StatsSummary.xls
Contains most of the same information as the StatsDetailed.txt output, but in
single row, tabulated format that makes it easy to concatenate in an Excel file.

c) <output>_QA_ntfreq_ref.txt
Nucleotide frequency table for reads aligned against the reference. It’s tab-
delimited and contains for each position the coverage and the frequency of each
base, deletion or insertion. This is a raw nucleotide frequency table without any
filtering or validation of variants.
Example:

Pos ConsensusNt Coverage FreqA FreqT FreqG FreqC FreqDel
 FreqInsertion Insertions(Count)
70 G 26 0 0 1 0 0
71 T 25 0 0.96 0.04 0 0
…

d) <output>_QA_ntfreq_assem.txt
Nucleotide frequency table for reads aligned against the assembly, same format
as the reference one.

e) <output>_QA_coverageVsRef.pdf
Coverage plot against the reference. The positions are based on the reference,
the red line is the coverage, the black horizontal lines are the amplicons, the
green horizontal lines are the genes and the blue horizontal lines are the contigs.
Example next page.

f) <output>_QA_coverageVsAssembly.pdf
Coverage plot against the assembly. The positions are based on the assembly,
not the reference and so they might not match between both maps. Only the red
coverage line is shown on this map.
Example next page.

0 2000 4000 6000 8000 10000

0
10
0

20
0

30
0

40
0

50
0

V2605_withReads_QA Coverage vs Reference

Position

C
ov
er
ag
e

0 2000 4000 6000 8000 10000

0
10
0

20
0

30
0

40
0

50
0

V2605_withReads_QA Coverage vs Assembly

Position

C
ov
er
ag
e

7 a) runMosaik2

runMosaik2.pl is a utility script that serves 2 purposes : the first is to act as a
wrapper script for MosaikBuild and MosaikAligner. It can also call the
samToQlx.pl script if the -qlx parameter is set to generate the .qlx file format that
is used by contigMerger, fixFrameshifts and QA_Stats from the .sam file format
that is an output of Mosaik.

Command Line :

runMosaik2 can take multiple input formats. It can function either with reads in
fasta and qual formats (often returned by 454 sequencing), paired or not, and in
fastq format (often returned by illumina sequencing), paired or not. In the
command line, include either -fa/-qual, -fa/-fa2/-qual/-qual2, -fq or -fq/-fq2.
The main command line for runMosaik2.pl is:

perl runMosaik2.pl -fa <reads.fasta> -qual <reads.qual> -ref
<assembly/reference.fasta> -o <output>

Input Files:

-fa <reads.fasta> : reads in fasta format
-qual <reads.qual> : reads quality scores in spaced-delimited integers format

or

-fa <reads.fasta> : first mates in paired reads in fasta format
-qual <reads.qual> : first mates in paired reads quality scores in spaced-delimited
integers format
-fa2 <reads2.fasta> : second mates in paired reads in fasta format
-qual2 <reads2.qual> : second mates in paired reads quality scores in spaced-
delimited integers format

or

-fq <reads.fastq> : reads in fastq format

or

-fq <reads.fastq> : first mates in paired reads in fastq format
-fq2 <reads2.fastq> : second mates in paired reads in fastq format

-ref <assembly/reference.fasta> : assembly or reference that you want to align
against, in fasta format

Options:

-hs <10> (integer)
Hash size for Mosaik alignment. See the documentation for more details.

-act <15> (integer)
Alignment candidate threshold for Mosaik alignment. See the documentation for
more details.

-mmp <0.25> (float)
Maximum percentage of the read length that can be errors

-minp <0.25> (float)
Minimum percentage of a read that has to be aligned to keep it

-ms <10> (float)
Match score of the Smith-Waterman algorithm.

-mms <-9> (float)
Mismatch penalty of the Smith-Waterman algorithm.

-hgop <20> (float)
Penalty for opening a gap in an homopolymer for the SW algorithm

-gop <40> (float)
Gap opening penalty for the SW algorithm

-gep <10> (float)
Gap extending penalty for the SW algorithm

-nqsmq <20> (integer)
Minimum quality required for a base to pass the NQS filter

-nqsaq <15> (integer)
Minimum quality required for the neighborhood bases to pass NQS

-nqssize <5> (integer)
Size of the neighborhood on each side of the central base that is considered for
the NQS filter

-bw <29> (integer)
Uses the banded Smith-Waterman algorithm. This greatly increases alignment
speed, but seems to slightly reduce accuracy in highly diverse samples. Use for
Illumina is recommended.

-nqvalue <1> (integer)
Q-Score given to a N that gets added by the script in the quality file. Default is 1.
The important part here is that all bases that have the nqvalue will get ignored
when looking at the neighborhood of the base in the NQS filter. This is to prevent
an inserted N from ‘flagging down’ all adjacent bases. The score 1 is chosen by
default because usually no base gets assigned a score this low.

-m <unique> (string)
Only keeps uniquely aligned reads. Use ‘all’ to include reads aligning in multiple
locations.

-st <illumina>
Sequencing technology. Can also be ‘454’. See Mosaik manual for more details.

-qlx <NULL> (boolean)
Convert the sam output in the .qlx format.

-qlxonly <NULL> (boolean)
Only keeps the .qlx output and not the .bam or .sam

-fakequals <0> (integer)
If set to a positive integer number, will fake the quality of all nucleotides to the
given value. This speeds up the creation of the .qlx file greatly if you do not care
about the quality scores.

-mfl <600> (integer)
Medium fragment length. Only necessary for paired reads.

-param454 <NULL> (boolean)
Sets the following parameters to a value that is suitable to 454:
-gop <15>
-hgop <4>
-gep <6.66>
-st <454>

-paramillu <NULL> (boolean)
Sets the following parameters to a value that is suitable to illumina:
-gop <40>
-hgop <20>
-gep <10>

-annpe <NULL> (string)
Network file. This file is actually included in the Mosaik distribution. It should be
located in the networkFile folder. For Mosaik 2.1.26, this file is named:
2.1.26.pe.100.0065.ann

-annse <NULL> (string)
Network file. This file is actually included in the Mosaik distribution. It should be
located in the networkFile folder. For Mosaik 2.1.26, this file is named:
2.1.26.se.100.005.ann

Outputs:

<output>.bam : bam format output file

<output>.sam : sam format output file

<output>.qlx : .qlx alignment file (see File Format for details). If the -qlx
parameter is set.

7 b) samToQlx

samToQlx is a script used by runMosaik2 to convert its bam output to a qlx
format. The script can also be used on its own to convert from bam or sam to qlx.

Command Line :

perl samToQlx.pl <sam/bam input> <reference.fasta> <output>

Input Files:

<sam/bam input> : sam or bam input file. If using a bam input, set the bam
parameter.
<reference.fasta> : reference fasta file

Options:

-bam <NULL> (boolean)
Output file is in bam format instead of sam format. This will convert the bam file
to a sorted sam file, and then convert to qlx.

-nqsmq <20> (integer)
Minimum quality required for a base to pass the NQS filter

-nqsaq <15> (integer)
Minimum quality required for the neighborhood bases to pass NQS

-nqssize <5> (integer)
Size of the neighborhood on each side of the central base that is considered for
the NQS filter

-nqvalue <1> (integer)
Q-Score given to a N that gets added by the script in the quality file. Default is 1.
The important part here is that all bases that have the nqvalue will get ignored
when looking at the neighborhood of the base in the NQS filter. This is to prevent
an inserted N from ‘flagging down’ all adjacent bases. The score 1 is chosen by
default because usually no base gets assigned a score this low.

-nosuffix <NULL> (boolean)
By default, in paired reads data the read name will have a suffix added of /1 or /2
depending on the .sam file. This option removes this addition.

-fakequals <0> (integer)
If set to a positive integer number, will fake the quality of all nucleotides to the
given value. This speeds up the creation of the .qlx file greatly if you do not care
about the quality scores.

8) configPaths:

configPaths.pl is more of an installer than anything else. It will modify the hard-
coded paths in all the scripts (vfat.pl, orientContig.pl, contigMerger.pl,
fixFrameshifts.pl, annotate.pl, QA_stats.pl, runMosaik.pl) to find the required
program on your system.

Command Line :

perl configPaths.pl <configfile.txt>

Input File:

The input file contains the list of paths for each variable.

scriptpath = '<scriptpath>’
mosaikpath = '<mosaikpath>’
mosaiknetworkpath = '<mosaiknetworkpath>’
musclepath = '<musclepath>'
perlpath = '<perlpath>'
genewisepath = '<genewisepath>'
genewisecfgpath = '<genewisecfgpath>'
samtoolspath = '<samtoolspath>'
Rpath = '<Rpath>'
refDataPath = ‘<refDataPath>’

All the scripts in this package should be located in scriptpath.

mosaikpath is the path for the Mosaik binaries MosaikBuild and MosaikAligner
for alignments from contigMerger.pl and vfat.pl. This should be the bin folder of
the Mosaik distribution (not necessary if no reads are supplied).

mosaiknetworkpath is the path for Mosaik’s network files for alignments from
contigMerger.pl and vfat.pl. This should be the networkFile folder of your Mosaik
distribution (not necessary if no reads are supplied).

musclepath is the path where you have muscle installed. If you are not sure that
your version of muscle will be compatible with the scripts (they were developed
on v3.8) you can download v3.8 from their website at
http://www.drive5.com/muscle/downloads.htm

perlpath is the path where perl is located

Rpath is the path for R 2.9 or higher to create the coverage and contig mapping
plots.

genewisepath is the path for the binaries of your installation of wise2.2. It should
be in your wise2.2.0 folder under /src/bin/.

genewisecfgpath is the path for config folder that is required by wise2.2. It
should be in your wise2.2.0 folder under /wisecfg/.

samtoolspath is the path for the installation of Samtools for bam/sam file
functions. It is required for runMosaik2.pl to run. Not necessary if the scripts are
used without reads.

refDataPath is an optional path to locate your reference data. See V-FAT section
for details.

Note that if you have the paths in your environment variables and that you can
run the different programs like R or muscle without specifying any path when
typing a commandline, you do not need to specify a path here either. The only
one that absolutely requires a path is scriptpath.

Output File:

There is no output file for configPaths. It will modify the paths in the various
scripts in this package.

*** Note : At the Broad, the easiest way to setup is this:

a) set scripts path to the location you want them
b) set muscle path to “/seq/annotation/bio_tools/muscle/3.8/”
c) set perl path to /usr/bin/env
d) set genewisepath to

/seq/annotation/bio_tools/GeneWise/wise2.2.0/src/bin/
e) set refDataPath to where the reference data is located (there is an existing

folder at : /seq/viral/analysis/annotation_refSequences/)
f) BEFORE running the scripts, do:
g) use .mosaik-1.1.0013
h) use R-2.9
i) setenv WISECONFIGDIR

/seq/annotation/bio_tools/GeneWise/wise2.2.0/wisecfg/

• File Formats •

a) Genelist and amplicon input files:

The format for these text files is tab-tabulated. It contains the feature name, start
and stop position.

Example of a genelist:

Gag 12 1514
Pol 1307 4318
Vif 4263 4841
Vpr 4781 5071
Tat_exon1 5052 5266
Tat_exon2 7585 7675
Rev_exon1 5191 5266
Rev_exon2 7585 7859
Vpu 5283 5528
Env 5446 8001
Nef 8003 8623

For the genes that have multiple exons, each exon is set on its own line, followed
by “_exon#”, i.e. [Gene]_exon#. This is the correct way to specify genes with
multiple exons. If they are not written this way, they will be treated as separate
genes instead.

Example of amplicons input (amplicon names can be anything):

Amp1 779 2888
Amp2 2019 4800
Amp3 3678 7134
Amp4 5560 8742

b) Peptides folder:

The peptides folder must contain a peptide file in fasta format for each gene,
named [Gene]_pep.fa, as well as one extra file named
[Virus]_Peptides_Features.txt containing information on each gene about their
product name (for NCBI submission) as well as the required presence of a
start/stop codon for this gene. The exact format for this file will be shown in the
example below.

The script “translateDna.pl” included in the package can let you generate this
peptide folder using the reference and the gene list (see format above). You can
use the following command line:

perl translateDna.pl <reference.fasta> <output> -genelist
<reference_genelist.txt>

All files names in the example are written in the standard way for the -virus
command line option to work.

First is an example of the files found in the folder HIV_Peptides :

Env_pep.fa
Gag_pep.fa
HIV_Peptides_Features.txt
Nef_pep.fa
Pol_pep.fa
Rev_pep.fa
Tat_pep.fa
Vif_pep.fa
Vpr_pep.fa
Vpu_pep.fa

The file Env_pep.fa would look like this:

>Env
MRVKGIRKNYQHLWRWGTM…

The file HIV_Peptides_Features.txt would look like this:

CDSStatus Multi
Gene Start Stop Product
Gag 1 1 Pr55(Gag)
Pol 0 1 Pol polyprotein
Vif 1 1 Vif
Vpr 1 1 Vpr protein
Env 1 1 Envelope surface glycoprotein gp160, precursor
Tat 1 1 Tat
Rev 1 1 Rev
Vpu 1 1 Vpu
Nef 1 1 27K protein

The first line specifies if the virus contains a single CDS (such as DENV or WNV)
or multiple CDS (such as HIV). The format is either:

CDSStatus Multi
or
CDSStatus Single

In this case, a start and stop codon are expected for each gene, except in the
case of Pol that does not require a start codon. For a virus like Dengue where
you have a single CDS, you would only have 1 in the start codon for the first
gene and 1 in the stop codon for the last gene, will all other numbers set at 0.

c) Reads fasta and quals

Reads must be in a fasta/quals format. Read names should not contain spaces
or special characters that would cause problems in a hash name as they are
used as such in some scripts (_ and – are fine). In general, the following one-
liner perl command lines will clean read names and only keep the part before the
first space (<reads.fa> and <reads.qual> are your file names):

perl -p -i -e 's/>(.+?) .+/>$1/g <reads.fa>
perl -p -i -e 's/>(.+?) .+/>$1/g <reads.qual>

The Reads.fa and Reads.qual files should look like this:

Reads.fa:
>ReadId1
ATGC…

>ReadId2
TGCA…
…

Reads.qual:
>ReadId1
20 20 15 25…

>ReadId2
30 30 30 29…
…

fastq2fasta.pl and fqpair2fasta.pl:

These scripts included in the package, fastqToFasta.pl and fqpair2fasta.pl, allow
to do the conversion from fastq format to reads fasta/qual format. fastqToFasta.pl
will take a single fastq file as input, while fqpair2fasta will take 2 paired fastq files
(which can be the output of an Illumina run with paired reads for instance).

Command Line :

perl fastq2fasta.pl <reads.fastq> <reads>
perl fqpair2fasta.pl <reads1.fastq> <reads2.fastq> <reads>

In both cases, this will create the files <reads>.fa and <reads>.qual

d) The .qlx file format:

The .qlx file format is a read alignment format that includes quality information for
each base as well as a quality flag to indicate if a base passed the Neighborhood
Quality Score (NQS) criteria or not, which is used by V-Phaser to call trusted
variants. The NQS is calculated for each base of a read depending on its quality
and the quality of the bases adjacent to it. The base must pass a minimum
quality score of q and its n adjacent bases on each side must pass a quality
score of q’. By default those values are q = 20, n = 5 and q’ = 15.

The format is the following:
>Read [ReadID] [read start] [read stop] [read length] [strand]
[assembly name] [assembly start] [assembly stop]
Read Sequence
Assembly Sequence
NQS String
Quality String (in ASCII format, ASCII character = Quality Score + 33).

Note that assembly here is whatever you aligned against.

2 scripts included in the package, samToQlx.pl and qlxToSam.pl, allow one to
convert the .qlx files to or from the .sam format (using samtools can then allow
conversion to/from bam).

samToQlx.pl and qlxToSam.pl:

These scripts included in the package, samToQlx.pl and qlxToSam.pl, allow one
to convert the .qlx files to or from the .sam format (using samtools can then allow
conversion to/from bam). RC454 will generate a .qlx read alignment directly. See
the section about runMosaik2 for more details about samToQlx. For
qlxToSam.pl, the command line is:

Command Line :

perl qlxToSam.pl <qlxinput.qlx> <assembly.fasta> <samoutput.sam>

translateDna.pl

This script is used to translate a DNA string into its peptide. If you supply a
genelist, it will generate a peptides folder with one file for the peptide of each
gene.

Command Line :

perl translateDna.pl <reference.fasta> <output>

Parameters:

-start <0> (integer)
If set, will start the translation of the DNA sequence at the specified base.

-stop <0> (integer)
If set, will stop the translation of the DNA sequence at the specified base.
-genelist <NULL> (string)
If a genelist file is specified with this parameter, the script will create a folder
named <output> and put a separate file named [Gene]_pep.fa for the peptide
sequence of each gene in the genelist. This can be used to generate the
peptides folder for annotate.pl

• Example Data •

The folder TestData included in the vFatPackage contains all files required to test
the scripts in this package. The following command line should run the script:

perl vfat.pl -contigs VTest_hiv_contigs.fa –readfa VTest_20k_reads.fa –
readq VTest_20k_reads.qual -o VTest_output -virus HIV

The current version contains 2 known minor issues that have not been resolved
yet.

1) It is possible for the annotation tool to return a gene as partial when it is
full if there is large indels occurring near the ends of the genes when
comparing to the reference genome. Such large indels throw off the
numbering in genewise. In general, the start and stop position of the gene
will be correct, the only problem will be that it will be called partial when it’s
not. If a gene comes out as partial and you have doubts that it is, check
this possibility first.

2) Frameshifts happening in long homopolymers (6+ nucleotides) can
occasionally fail to find the correct read window to automatically correct it
even if it exists. This is due to alignment issues, so if you have remaining
unfixed long homopolymer frameshifts, they might need to be modified
manually.

Please report any other issue that you find on our Broad Viral Tool Users forum
at:
https://groups.google.com/forum/?fromgroups#!forum/viral-tool-users

Alternatively, you can report them through email at patrickc@broadinstitute.org or
mczody@broadinstitute.org.

