

SOMClustering Documentation

Module name: SOMClustering
Description: Self-Organizing Maps algorithm
Author: Keith Ohm (Broad Institute), gp-help@broad.mit.edu
Date: 10/28/03
Release: 1.0

Summary:
The Self Organizing Map (SOM) is a clustering algorithm where a grid of 2D nodes (clusters)
is iteratively adjusted to reflect the global structure in the expression dataset. With the SOM,
the geometry of the grid is randomly chosen (e.g., a 3 x 2 grid) and mapped to the k-
dimensional gene expression space. The mapping is then iteratively adjusted to reflect the
natural structure of the data. Resulting clusters are organized in a 2D grid where similar
clusters lie near to each other and provide an automatic “executive” summary of the dataset.
This module is a standard implementation of the SOM algorithm that can be used to cluster
genes or samples (or just about any data, i.e. stocks, mutual funds, spectral peaks, etc).

References:

• Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Dmitrovsky, E., Lander, E.S., Golub, T.R.
(1999) Interpreting gene expression with self-organizing maps: Methods and
application to hematopoeitic differentiation. Proc. Natl. Acad. Sci. USA 96:2907–2912.

Parameters:

 Name Description

dataset.filename: Dataset (res, gct, or odf dataset)
cluster.range: Range of values can be entered and the program will

automatically run the algorithm for each number of clusters in
the range. For example, range 2-6 will produce clusters of (1 x
2), (1 x 3), (1 x 4), (1 x 5), (1 x 6), (2 x 2) and (2 x 3).

iterations: How many times the algorithm should try to refine the clusters.
Initially, this value can be set low for faster exploration, but
should be set high (e.g., 50,000 or 500,000) for good
convergence.

seed.range: The seed for the random number generator, is exposed to allow
the user to recreate a given session at a later time, (as opposed
to allowing the program to generate a random initial seed which
could result in different outcomes even if all the other
parameters are identical).

 cluster.by Whether to cluster by rows or columns.
 som.rows setting this and som.cols to a non zero value will override

cluster.range and the computation will be forthe specified
geometry

 som.cols setting this and som.rows to a non zero value will override
cluster.range and the computation will be forthe specified
geometry

 initialization The SOM algorithm starts from a set of random centroids.

These centroids can be initialized by: Random_Vectors(new
vectors are randomly generated) or Random_Datapoints(actual
datapoints are randomly selected to use as the initial centroids)

 neighborhood The neighborhood function determines how centroids near to the
target centroid are updated. Gaussian; all centroids get updated
and they are weighted by a Gaussian centered on the target
centroid, with a standard deviation of sigma. Bubble; centroids
within sigma get a full update and centroids outside of sigma get
no update.

 alpha.initial The initial learning weights. Centroid updates are weighted by
the learning rate.

 alpha.final The final learning weights. Centroid updates are weighted by the
learning rate.

 sigma.initial The initial sigma that determine the size of the update
neighborhood around the target centroid.

 sigma.final The final sigma that determine the size of the update
neighborhood around the target centroid.

Return Value:

1. SOM Cluster results files (one file or more depending on the cluster.range
specified)

2. Stdout.txt: the”stdout” text output from running the program.

Platform dependencies:

 Task type: Clustering
 CPU type: any
 OS: any
 Java JVM level: 1.3
 Language: Java

	SOMClustering Documentation
	Module name: SOMClustering
	CPU type: any

