Difference between revisions of "Gsea Algorithm"

From GeneSetEnrichmentAnalysisWiki
Jump to navigation Jump to search
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<br />
+
[http://www.broadinstitute.org/gsea/ GSEA Home] |
<p class="MsoNormal">Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an <em>a priori</em> defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). The algorithm is described in the following paper and supplementary information:<br /></p>
+
[http://www.broadinstitute.org/gsea/downloads.jsp Downloads] |
<div style="margin-left: 40px;"> Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. &amp; Mesirov, J. P. (2005) Proc. Natl. Acad. Sci. USA 102, 15545-15550.<span style="font-weight: bold;"> <strong>Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression            profiles. </strong></span>[http://wwwdev.broad.mit.edu/gsea/doc/subramanian_tamayo_gsea_pnas.pdf pdf]<span style="font-weight: bold;"></span><br /><span style="font-weight: bold;"></span><br /><span style="font-weight: bold;">            <span style="font-weight: bold;">Supplementary info for Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide             expression             profiles.</span><span style="text-decoration: underline;"> </span></span>[http://wwwdev.broad.mit.edu/gsea/doc/subramanian_tamayo_gsea_pnas_supp_info.pdf pdf] <br /><br /></div>
+
[http://www.broadinstitute.org/gsea/msigdb/ Molecular Signatures Database] |
The examples from the GSEA paper are provided here. <span style="font-weight: bold;">
+
[http://www.broadinstitute.org/cancer/software/gsea/wiki/index.php/Main_Page Documentation] |
<ul>          </ul>
+
[http://www.broadinstitute.org/gsea/contact.jsp Contact]
    </span>
+
<br>
 +
<p>Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an <em>a priori</em> defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).</p>
 +
<p>The algorithm is described in the following paper and supplementary information:</p>
 +
<p>
 +
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.<br>
 +
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. &amp; Mesirov, J. P.<br>
 +
<i>Proc. Natl. Acad. Sci. USA</i> (2005) <strong>102</strong>:15545-50.
 +
[http://www.broadinstitute.org/gsea/doc/subramanian_tamayo_gsea_pnas.pdf PDF]</p>
 +
<p>Supplementary Information for<br>
 +
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.[http://www.broadinstitute.org/gsea/doc/subramanian_tamayo_gsea_pnas_supp_info.pdf pdf]</p>
 +
<p>Examples from the GSEA paper are provided [http://www.broadinstitute.org/gsea/datasets.jsp here].</p>

Latest revision as of 02:05, 25 September 2016

GSEA Home | Downloads | Molecular Signatures Database | Documentation | Contact

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).

The algorithm is described in the following paper and supplementary information:

Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. & Mesirov, J. P.
Proc. Natl. Acad. Sci. USA (2005) 102:15545-50. PDF

Supplementary Information for
Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.pdf

Examples from the GSEA paper are provided here.