Difference between revisions of "Gsea Algorithm"

From GeneSetEnrichmentAnalysisWiki
Jump to navigation Jump to search
m (reverted test edit)
Line 1: Line 1:
 
<br />
 
<br />
<p class="MsoNormal">Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an <em>a priori</em> defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). The algorithm is described in the following paper and supplementary information:<br /></p>
+
<p class="MsoNormal">Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an <em>a priori</em> defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). The algorithm is described in the following paper and supplementary information:<br />
<div style="margin-left: 40px;"> Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. &amp; Mesirov, J. P. (2005) Proc. Natl. Acad. Sci. USA 102, 15545-15550.<span style="font-weight: bold;"> <strong>Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression            profiles. </strong></span>[http://www.broad.mit.edu/cancer/software/gsea_beta/doc/subramanian_tamayo_gsea_pnas.pdf pdf]<span style="font-weight: bold;"></span><br /><span style="font-weight: bold;"></span><br /><span style="font-weight: bold;">            <span style="font-weight: bold;">Supplementary info for Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide            expression            profiles.</span><span style="text-decoration: underline;"> </span></span>[http://www.broad.mit.edu/cancer/software/gsea_beta/doc/subramanian_tamayo_gsea_pnas_supp_info.pdf pdf] <br /><br /></div>
+
</p>
Examples from the GSEA paper are provided [http://www.broad.mit.edu/cancer/software/gsea_beta/resources/datasets_index.html here].<span style="font-weight: bold;"><br />
+
<div style="margin-left: 40px;"> Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. &amp; Mesirov, J. P. (2005) Proc. Natl. Acad. Sci. USA 102, 15545-15550.<span style="font-weight: bold;"> <strong>Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression            profiles. </strong></span>[http://www.broad.mit.edu/cancer/software/gsea/doc/subramanian_tamayo_gsea_pnas.pdf pdf]<br />
<ul>          </ul>
+
<br />
    </span>
+
<span style="font-weight: bold;">            <span style="font-weight: bold;">Supplementary info for Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide            expression            profiles.</span><span style="text-decoration: underline;"> </span></span>[http://www.broad.mit.edu/cancer/software/gsea/doc/subramanian_tamayo_gsea_pnas_supp_info.pdf pdf] <br />
 +
<br />
 +
</div>
 +
Examples from the GSEA paper are provided [http://www.broad.mit.edu/cancer/software/gsea/resources/datasets_index.html here].<span style="font-weight: bold;"><br />
 +
</span>

Revision as of 13:40, 10 January 2007


Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes). The algorithm is described in the following paper and supplementary information:

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. & Mesirov, J. P. (2005) Proc. Natl. Acad. Sci. USA 102, 15545-15550. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. pdf


Supplementary info for Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. pdf

Examples from the GSEA paper are provided here.