We discovered today that we made an error in the documentation article that describes the RNAseq Best Practices workflow. The error is not critical but is likely to cause an increased rate of False Positive calls in your dataset.

The error was made in the description of the "Split & Trim" pre-processing step. We originally wrote that you need to reassign mapping qualities to 60 using the ReassignMappingQuality read filter. However, this causes all MAPQs in the file to be reassigned to 60, whereas what you want to do is reassign MAPQs only for good alignments which STAR identifies with MAPQ 255. This is done with a different read filter, called ReassignOneMappingQuality. The correct command is therefore:

java -jar GenomeAnalysisTK.jar -T SplitNCigarReads -R ref.fasta -I dedupped.bam -o split.bam -rf ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U ALLOW_N_CIGAR_READS

In our hands we see a bump in the rate of FP calls from 4% to 8% when the wrong filter is used. We don't see any significant amount of false negatives (lost true positives) with the bad command, although we do see a few more true positives show up in the results of the bad command. So basically the effect is to excessively increase sensitivity, at the expense of specificity, because poorly mapped reads are taken into account with a "good" mapping quality, where they would normally be discarded.

This effect will be stronger in datasets with lower overall quality, so your results may vary. Let us know if you observe any really dramatic effects, but we don't expect that to happen.

To be clear, we do recommend re-processing your data if you can, but if that is not an option, keep in mind how this affects the rate of false positive discovery in your data.

We apologize for this error (which has now been corrected in the documentation) and for the inconvenience it may cause you.


sirian


Thanks for the correction! I was actually wondering a little bit why you changed every score.

Wed 11 Jun 2014

sboyle


Thanks for the correction Geraldine!

Wed 11 Jun 2014

kam


Here's a working link for [ReassignOneMappingQuality](https://www.broadinstitute.org/gatk/gatkdocs/org_broadinstitute_gatk_engine_filters_ReassignOneMappingQualityFilter.php). Have you considered using the mapping quality formula proposed by the authors of subread? This mapping quality score works for any read mapper. See page 20 in the [Subread User's Guide](http://bioinf.wehi.edu.au/subread-package/SubreadUsersGuide.pdf).

Wed 11 Jun 2014

Geraldine_VdAuwera


@kam This may be a good recommendation to make to the authors of the mappers.

Wed 11 Jun 2014

justinjj


Dear Geraldine, Could you please clarify me is there any difference or issue if I use the mapq as 50 instead of 60 as suggested to run GATK? The bwa aligner higher quality is 60 but the tophat2 (uses bowtie2) provide higher quality/unique mapq as 50 and GATK runs without any error in both cases also by star aligner "--outSAMmapqUnique 50" The RNAseq mappers is already giving meaningful quality score? https://software.broadinstitute.org/gatk/guide/article?id=3891 (So we use the GATK’s ReassignOneMappingQuality read filter to reassign all good alignments to the default value of 60. This is not ideal, and we hope that in the future RNAseq mappers will emit meaningful quality scores, but in the meantime this is the best we can do.) Thanks.

Wed 11 Jun 2014

Geraldine_VdAuwera


Yes, that's fine. If newer versions of the mappers produce MAPQ scores in that range, there is no need to reassign a different value.

Wed 11 Jun 2014

justinjj


Thanks Geraldine.

Wed 11 Jun 2014




At a glance



Follow us on Twitter

GATK Dev Team

@gatk_dev

@watsonhaigh It's not currently possible. If you explain the use case on the forum we can consider a feature request.
27 Feb 17
@vibbioinfocore Thanks for having us over! Great group of participants, lots of good questions!
25 Feb 17
Slides, tutorial materials from #GATK workshop in Leuven, Belgium posted at https://t.co/LaXzONIp1C
19 Feb 17
RT @EMBL_ABR: Register your interest now in training in @gatk_dev @BroadGenomics https://t.co/gwEzuwOZYP to be run in Aus by @BioplatformsA…
19 Feb 17
#GATK Support team appreciation day -- say hi and get a prize! https://t.co/J71I4FL9zA
23 Jan 17

Our favorite tweets from others

Our 3-day course on GATK https://t.co/mtN60KRTyS finished - 38 participants very happy! Big thanks to @gatk_dev team for excellent lessons.
24 Feb 17
@froggleston @dgmacarthur Sounds like ExAC is reaching Uber stage. ‘Uber but for pizza’. ‘ExAC but for wheat’.
14 Jan 17
#ESRenpeinture grad school - postdoc - after postdoc https://t.co/o3vQMgBDgk
6 Jan 17
Really happy to have you again this year! @VIBLifeSciences https://t.co/8rg5VQ2fbX
3 Jan 17
Currently in a time-out for saying that duck fat had a certain "je ne sais quack" at the thanksgiving dinner table.
25 Nov 16
See more of our favorite tweets...
Search blog by tag

appistry ashg ashg16 benchmarks best-practices bug bug-fixed cancer cloud cluster cnv collaboration commandline community compute conferences cram cromwell depthofcoverage diagnosetargets error forum gatk3 gatk4 genotype-refinement genotypegvcfs google grch38 gvcf haploid haplotypecaller hg38 holiday hts htsjdk ibm intel java8 job job-offer jobs license meetings mutect mutect2 ngs outreach pairhmm parallelism patch performance picard pipeline plans ploidy polyploid poster presentations printreads profile promote release release-notes rnaseq runtime saas script sequencing service slides snow speed status support syntax talks team terminology topstory troll tutorial unifiedgenotyper vcf-gz version-highlights versions vqsr wdl webinar workflow workshop xhmm