MoChA is a free software tool released under the MIT license for mosaic chromosomal alterations detection and analysis from DNA microarray or whole genome sequence data. It can be used both with Illumina and Affymetrix data. It can also be used for detection of germline copy number variants. Data can be prepared in usable file formats using the BCFtools/gtc2vcf plugin and a MoChA WDL pipelines exist that allow to perform all the steps together
MoChA uses hidden Markov models (HMM) to integrate intensity or coverage information but it also leverage haplotype information to detect subtle allelic imbalances due to large chromosomal alterations at low cell fractions. It is currently the only software that can detect chromosome length events at cell fractions as low as 1%. To infer haplotypes it requires the data to be first preprocessed using SHAPEIT5 to infer haplotypes with population based phasing
MoChA is entirely written in C as a BCFtools plugin. It can be compiled with BCFtools or downloaded as a set of binary files. It requires BCFtools 1.20 or newer to run. Scripts to plot results are also provided based on ggplot2
Download
You can download from this page the latest Linux x86_64 BCFtools plugin binaries for
the stable version and
the development version
Source code is also available for the the stable version and the development version
To run a BCFtools plugin binary, say mocha.so, there are four options:
$ export BCFTOOLS_PLUGINS=/path/to/bcftools/plugins && bcftools +mocha
$ export BCFTOOLS_PLUGINS=/path/to/bcftools/plugins && bcftools plugin mocha
$ bcftools +$BCFTOOLS_PLUGINS/mocha.so
$ bcftools plugin $BCFTOOLS_PLUGINS/mocha.so
We also provide the resources to run the MoChA pipeline, including the reference panels for phasing and imputation:
mocha.GRCh37.zip - Resources for the human GRCh37 reference (approx. 13GB) updated on 2023-04-27
mocha.GRCh38.zip - Resources for the human GRCh38 reference (approx. 17GB) updated on 2023-10-10
To find more information on how to run the software, try our github page. For any feedback, send an email to giulio.genovese@gmail.com
Beta
For Ubuntu users, a debian package will be provided in the future to install the plugins.
Publications
Publications that used MoChA (or the same HMM framework or the shared UKB callset):
2024
- Otsuka, I. et al. Increased somatic mosaicism in autosomal and X chromosomes for suicide death. Molecular Psychiatry (2024) doi:10.1038/s41380-024-02718-y
- Ormond, C. et al. Whole genome sequencing study of identical twins discordant for psychosis. Translational Psychiatry (2024) doi:10.1038/s41398-024-02982-0
- Desai, P. et al. Association of clonal hematopoiesis and mosaic chromosomal alterations with solid malignancy incidence and mortality. Cancer (2024) doi:10.1002/cncr.35455
- Chang, K. et al. The Contribution of Mosaic Chromosomal Alterations to Schizophrenia. Biological Psychiatry (2024) doi:10.1016/j.biopsych.2024.06.015
- Lim, J. et al. Associations between mosaic loss of sex chromosomes and incident hospitalization for atrial fibrillation in the United Kingdom. medRxiv (2024) doi:10.1101/2024.05.29.24308171
- Liu, A. et al. Genetic drivers and cellular selection of female mosaic X chromosome loss. Nature (2024) doi:10.1038/s41586-024-07533-7
- Pershad, Y. et al. Determinants of mosaic chromosomal alteration fitness. Nat Commun. (2024) doi:10.1038/s41467-024-48190-8
- Francis, M. et al. Multi-ancestry genome-wide association meta-analysis of mosaic loss of chromosome Y in the Million Veteran Program identifies 167 novel loci. medRxiv (2024) doi:10.1101/2024.04.24.24306301
- Kishtagari, A. et al. Driver mutation zygosity is a critical factor in predicting clonal hematopoiesis transformation risk. Blood Cancer Journal (2024) doi:10.1038/s41408-023-00974-9
2023
- Rafati, M. et al. JAK2V617F mutation and associated chromosomal alterations in primary and secondary myelofibrosis and post-HCT outcomes. Blood Advances (2023) doi:10.1182/bloodadvances.2023010882
- Chang, V. C. et al. Glyphosate Use and Mosaic Loss of Chromosome Y among Male Farmers in the Agricultural Health Study. Environmental Health Perspectives (2023) doi:10.1289/EHP12834
- Zhou, W. et al. Mosaic chromosomal alterations in peripheral blood leukocytes of children in sub-Saharan Africa. Nature Communications (2023) doi:10.1038/s41467-023-43881-0
- Jakubek, Y. A. et al. Mosaic chromosomal alterations in blood across ancestries using whole-genome sequencing. Nature Genetics (2023) doi:10.1038/s41588-023-01553-1
- Ressler, A. K. et al. Single-nucleus DNA sequencing reveals hidden somatic loss-of-heterozygosity in Cerebral Cavernous Malformations. Nature Communications (2023) doi:10.1038/s41467-023-42908-w
- Brown, W. B. et al. Shared and distinct genetic etiologies for different types of clonal hematopoiesis. Nature Communications (2023) doi:10.1038/s41467-023-41315-5
- Rodriguez-Meira, A. et al. Single-cell multi-omics identifies chronic inflammation as a driver of TP53-mutant leukemic evolution. Nature Genetics (2023) doi:10.1038/s41588-023-01480-1
- Eberhardt, R. Y. et al. Detection of mosaic chromosomal alterations in children with severe developmental disorders recruited to the DDD study. Genetics in Medicine Open (2023) doi:10.1016/j.gimo.2023.100836
- Babadi, M. et al. GATK-gCNV enables the discovery of rare copy number variants from exome sequencing data. Nature Genetics (2023) doi:10.1038/s41588-023-01449-0
- Kamphuis, P. et al. Clonal Hematopoiesis Defined by Somatic Mutations Infrequently Co-occurs With Mosaic Loss of the Y Chromosome in a Population-based Cohort. Hemasphere (2023) doi:10.1097/HS9.0000000000000956
- Hubbard, A. K. et al. Serum biomarkers are altered in UK Biobank participants with mosaic chromosomal alterations. Human Molecular Genetics (2023) doi:10.1093/hmg/ddad133
- Cheng, C. et al. Mosaic Chromosomal Alterations Are Associated With Increased Lung Cancer Risk: Insight From the INTEGRAL-ILCCO Cohort Analysis. Journal of Thoracic Oncology (2023) doi:10.1016/j.jtho.2023.05.001
- Wright, C. et al. Genomic Diagnosis of Rare Pediatric Disease in the United Kingdom and Ireland. New England Journal of Medicine (2023) doi:10.1056/NEJMoa2209046
- Watson, C. J. et al. Mutation rates and fitness consequences of mosaic chromosomal alterations in blood. Nature Genetics (2023) doi:10.1038/s41588-023-01490-z
- Maury, E. A. et al. Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions. Cell Genomics (2022) doi:10.1016/j.xgen.2023.100356
- Dawoud, A. A. Z. et al. Age-related loss of chromosome Y is associated with levels of sex hormone binding globulin and clonal hematopoiesis defined by TET2, TP53, and CBL mutations. Human Genetics (2023) doi:10.1126/sciadv.ade9746
- Wong, W. J. et al. Clonal hematopoiesis and risk of chronic liver disease. Nature (2023) doi:10.1038/s41586-023-05857-4
- Lin, S. et al. Mosaic chromosomal alterations detected in men living with HIV and the relationship to non-Hodgkin lymphoma. AIDS (2023) doi:10.1097/QAD.0000000000003545
- Kessler, M. D. et al. Common and rare variant associations with clonal haematopoiesis phenotypes. Nature (2023) doi:10.1038/s41586-022-05448-9
2022
- Levin, M. G. et al. Genetics of smoking and risk of clonal hematopoiesis. Nature Scientific Reports (2022) doi:10.1038/s41598-022-09604-z
- Qin, N. et al. Association of the interaction between mosaic chromosomal alterations and polygenic risk score with the risk of lung cancer: an array-based case-control association and prospective cohort study. The Lancet Oncology (2022) doi:10.1016/S1470-2045(22)00600-3
- Brown, D. W. et al. Germline-somatic JAK2 interactions are associated with clonal expansion in myelofibrosis. Nature Communications (2022) doi:10.1038/s41467-022-32986-7
- McReynolds, L. J. et al. Genetic testing in severe aplastic anemia is required for optimal hematopoietic cell transplant outcomes. Blood (2022) doi:10.1182/blood.2022016508
- Uddin, M. et al. Germline genomic and phenomic landscape of clonal hematopoiesis in 323,1121 individuals. medRxiv (2022) doi:10.1101/2022.07.29.22278015
- Genovese, G. et al. Chromosomal phase improves aneuploidy detection in non-invasive prenatal testing at low fetal DNA fractions. Nature Scientific Reports (2022) doi:10.1038/s41598-022-14049-5
- Merkle, F. T. et al. Whole-genome analysis of human embryonic stem cells enables rational line selection based on genetic variation. Cell Stem Cell (2022) doi:10.1016/j.stem.2022.01.011
- López-Rivera, J. A. et al. The genomic landscape across 474 surgically accessible epileptogenic human brain lesions. Brain (2022) doi:10.1093/brain/awac376
- Walsh, K. et al. Clonal Hematopoiesis Analyses in Clinical, Epidemiologic, and Genetic Aging Studies to Unravel Underlying Mechanisms of Age-Related Dysfunction in Humans. frontiers in Aging (2022) doi:10.3389/fragi.2022.841796
- Balagué-Dobón, L. et al. Fully exploiting SNP arrays: a systematic review on the tools to extract underlying genomic structure. Briefings in Bioinformatics (2022) doi:10.1093/bib/bbac043
2021
- Honigberg, M. C. et al. Premature Menopause, Clonal Hematopoiesis, and Coronary Artery Disease in Postmenopausal Women. Circulation (2021) doi:10.1161/CIRCULATIONAHA.120.051775
- Lin, S. et al. Incident disease associations with mosaic chromosomal alterations on autosomes, X and Y chromosomes: insights from a phenome-wide association study in the UK Biobank. Cell & Bioscience (2021) doi:10.1186/s13578-021-00651-z
- Saiki, R et al. Combined landscape of single-nucleotide variants and copy number alterations in clonal hematopoiesis. Nature Medicine (2021) doi:10.1038/s41591-021-01411-9
- Koskela, J. T. et al. Genetic variant in SPDL1 reveals novel mechanism linking pulmonary fibrosis risk and cancer protection. medRxiv (2021) doi:10.1101/2021.05.07.21255988
- Niroula, A. et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med (2021) doi:10.1038/s41591-021-01521-4
- Glessner, J.T. et al. MONTAGE: a new tool for high-throughput detection of mosaic copy number variation. BMC Genomics (2021) doi:10.1186/s12864-021-07395-7
- Sherman, M. A. et al. Large mosaic copy number variations confer autism risk. Nat Neurosci (2021) doi:10.1038/s41593-020-00766-5
- Zekavat S., et al. Hematopoietic mosaic chromosomal alterations increase the risk for diverse types of infection. Nat Medicine (2021) doi:10.1038/s41591-021-01371-0
2020
- Lin, S.-H. et al. Mosaic chromosome Y loss is associated with alterations in blood cell counts in UK Biobank men. Sci Rep 10, 3655 (2020) doi:10.1038/s41598-020-59963-8
- Brown, D. W. et al. Genetically predicted telomere length is associated with clonal somatic copy number alterations in peripheral leukocytes. PLoS Genet 16, e1009078 (2020).doi:10.1371/journal.pgen.1009078
- Hagg S., et al. Deciphering the genetic and epidemiological landscape of mitochondrial DNA abundance. Hum Genetics (2020) doi:10.1007/s00439-020-02249-w
- Terao, C. et al. The genomic landscape of clonal hematopoiesis in Japan. Nature (2020) doi:10.1038/s41586-020-2426-2
- Loh, P.-R., Genovese, G. & McCarroll, S. A. Monogenic and polygenic inheritance become instruments for clonal selection. Nature (2020) doi:10.1038/s41586-020-2430-6
2019
- Thompson, D. J. et al. Genetic predisposition to mosaic Y chromosome loss in blood. Nature 575, 652-657 (2019) doi:10.1038/s41586-019-1765-3
2018
- Loh, P.-R. et al. Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559, 350-355 (2018) doi:10.1038/s41586-018-0321-x
Releases
Version 2024-09-27 source and Linux x86_64 binaries (compiled for BCFtools 1.20)
Version 2024-05-05 source and Linux x86_64 binaries (compiled for BCFtools 1.20)
Version 2023-09-19 source and Linux x86_64 binaries (compiled for BCFtools 1.17)
Version 2022-12-21 source and Linux x86_64 binaries (compiled for BCFtools 1.16)
Version 2022-05-18 source and Linux x86_64 binaries (compiled for BCFtools 1.15.1)
Version 2022-01-12 source and Linux x86_64 binaries (compiled for BCFtools 1.14 but HTSlib must be patched for bug 1362)
Version 2021-10-15 source and Linux x86_64 binaries (compiled for BCFtools 1.13)
Version 2021-05-14 source and Linux x86_64 binaries (compiled for BCFtools 1.11)
Version 2021-03-15 source and Linux x86_64 binaries (compiled for BCFtools 1.11)
Version 2021-01-20 source and Linux x86_64 binaries (compiled for BCFtools 1.11)
Version 2020-09-01 source and Linux x86_64 binaries (compiled for BCFtools 1.10.2)
Version 2020-08-25 source and Linux x86_64 binaries (compiled for BCFtools 1.10.2)
Version 2020-08-13 source and Linux x86_64 binaries (compiled for BCFtools 1.10.2)
Version 2020-08-11 source and Linux x86_64 binaries (compiled for BCFtools 1.10.2)
Version 2020-07-20 source and Linux x86_64 binaries (compiled for BCFtools 1.10.2)
Credits
MoChA is developed by Giulio Genovese at the Broad Institute and at the McCarroll Lab in the Harvard Medical School Department of Genetics under the supervision of Steven McCarroll
We would like to thank the following people: Po-Ru Loh for running the analyses on the UK BioBank, Pier Francesco Palamara for setting up an early meeting in February 2016 that sparked the development of this project, Bob Handsaker, Seva Kashin, and Chris Whelan at the Broad Institute for useful discussions related to detection of copy number variants, Heng Li, Petr Danecek, John Marshall, James Bonfield, and Shane McCarthy for developing HTSlib and BCFtools